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1 Introduction

Let A denote the class of analytic functions f defined on the unit disk U =
{z : |z| < 1} with normalization f(0) = 0 and f ′(0) = 1. Such a function has
the Taylor series expansion about the origin in the form

f(z) = z +
∞∑
n=2

anz
n, (1)
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denoted by S, the subclass of A consisting of functions that are univalent in
U. For f ∈ A given by (1) and g(z) given by

g(z) = z +
∞∑
n=2

bnz
n (2)

their convolution (or Hadamard product), denoted by (f ∗ g), is defined as

(f ∗ g)(z) = z +
∞∑
n=2

anbnz
n = (g ∗ f)(z), (z ∈ U). (3)

Note that f ∗ g ∈ A.
In geometric function theory, the univalence of complex functions is an

important property, but it is difficult, and in many cases impossible, to show
directly that a certain complex function is univalent. For this reason, many
authors found different types of sufficient conditions of univalence. One of
the most important of these conditions of univalence in the domains E and
the exterior of a closed unit disc is the well-known criterion of Becker [5].
Becker’s work depends upon a clever use of the theory of Loewner chains and
the generalized Loewner differential equation. Extensions of this criterion were
given by Deniz and Orhan [9], Ali et al. [2] and Nehari [14].
In [13] Mustafa and Darus hzve recently introduced a new generalized integral
operator Jα

µ,bf(z) as we show in the following:

Definition 1.1 A general Hurwitz- Lerch Zeta function Φ(z, µ, b) defined by

Φ(z, µ, b) =
∞∑
n=0

zn

(n+ b)µ
,

where (µ ∈ C, b ∈ C − Z−
0 ) when |z| < 1, and R(b) > 1 when (|z| = 1).

We define the function

Φ∗(z, µ, b) = (bµzΦ(z, µ, b)) ∗ f(z),

then

Φ∗(z, µ, b) = z +
∞∑
n=2

an
(n+ b− 1)µ

zn

Definition 1.2 Let the function f be analytic in a simply connected domain
of the z-plane containg the orgin. The fractional derivative of f of order α is
defined by

Dα
z f(z) =

1

Γ(1− α)

d

dz

∫ z

0

f(t)

(z − t)α
dt, (0 ≤ α < 1),

where the multiplycity of (z− t)−α is removed by requiring log(z− t) to be real
when (z − t) > 0.
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Using Definition 1.2 and and its known extensions involving fractional deriva-
tives and fractional integrals, Owa and Srivastava [9] introduced the operator
Ωα : A → A which is known as an extension of fractional derivative and
fractional integral, as follows:

Ωαf(z) = Γ(2− α)zαDα
z f(z), (α ̸= 2, 3, 4, ...)

= z +
∞∑
n=2

Γ(n+ 1)Γ(2− α)

Γ(n+ 1− α)
anz

n, (z ∈ U)

For α ∈ C, b ∈ C − Z−
0 , and 0 ≤ α < 1, the generalized integral operator

Jα
µ,bf : A → A, is defined by

Jα
µ,bf(z) = Γ(2− α)zαDα

zΦ
∗(z, α, b), (α ̸= 2, 3, 4, ...)

= z +
∞∑
n=2

Φn(µ, b, α) anz
n, (z ∈ U).

where Φn(µ, b, α) =
Γ(n+1)zαDα

z Φ
∗(z,α,b)

Γ(n+1−α)

(
b

n−1+b

)µ
Note that : J0

0,bf(z) = f(z).
Special cases of this operator include :

(i). Jα
0,bf(z) ≡ Ωαf(z) is Owa and Srivastava operator [16].

(ii). J0
µ,b+1f(z) ≡ Jµ,bf(z) is the Srivastava and Attiya integral operator[18].

(iii). J0
1,1f(z) ≡ A(f)(z) is the Alexander integral operator [1].

(iv). J0
µ+1,1f(z) ≡ L(f)(z) is the Libera integral operator [12].

(v). J0
1,δf(z) ≡ Lδ(f)(z) is the Bernardi integral operator [6].

(vi). J0
σ,2f(z) ≡ Iσf(z) is the Jung-Kim-Kim-Srivastava integral operator [11].

Now, by making use of the Hurwitz - Lerch zeta operator Jα
µ,bf, we define a new

subclass of functions belonging to the class A. In this paper we derive sufficient
conditions of univalence for the generalized operator Jα

µ,bf(z). Also, a number
of known univalent conditions would follow upon specializing the parameters
involved. In order to prove our results wee need the following Lemmas.

Lemma 1.3 [5] Let f ∈ A. If for all z ∈ E

(1− |z|2)
∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1 (4)

then the function f is univalent in E.
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Lemma 1.4 [18] Let f ∈ A. If for all z ∈ E∣∣∣∣z2f ′(z)

f 2(z)
− 1

∣∣∣∣ ≤ 1 (5)

then the function f is univalent in E.

Lemma 1.5 [19] Let µ be a real number µ > 1
2
and f ∈ A. If for all z ∈ E

(1− |z|2µ)
∣∣∣∣zf ′′(z)

f ′(z)
+ 1− µ

∣∣∣∣ ≤ µ (6)

then the function f is univalent in E.

Lemma 1.6 [10] If f ∈ S ( the class of univalent functions ) and

z

f(z)
= 1 +

∞∑
n=1

bnz
n (7)

then
∞∑
n=1

(n− 1)|bn|2 ≤ 1.

Lemma 1.7 [17] Let ν ∈ C,Re{ν} ≥ 0 and f ∈ A. If for all z ∈ E

1− |z|2Re(ν)

Re(ν)

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1 (8)

then the function

Fν(z) =

ν

z∫
0

uν−1f ′(u)du

 1
ν

is univalent in E.

2 Main Results

In this section, we establish the sufficient conditions to obtain a univalence for
analytic functions involving the differential operator.

Theorem 2.1 Let f ∈ A. If for all z ∈ E

∞∑
n=1

Φn(µ, b, α)[n(2n− 1)]|an| ≤ 1 (9)

then Jα
µ,bf(z) is univalent in E.



Univalence Criteria for Analytic Functions... 27

Proof. Let f ∈ A. Then for all z ∈ E, we have

(1− |z|2)

∣∣∣∣∣z(Jα
µ,bf(z))

′′

(Jα
µ,bf(z))

′

∣∣∣∣∣ ≤ (1 + |z|2)

∣∣∣∣∣z(Jα
µ,bf(z))

′′

(Jα
µ,bf(z))

′

∣∣∣∣∣
≤

2
∞∑
n=2

n(n− 1)Φn(µ, b, α)|an|

1−
∞∑
n=2

nΦn(µ, b, α)|an|

the last inequality is less than 1 if the assertion (9) is hold. Thus is view of
Lemma 1.3, Jα

µ,bf(z) is univalent in E.

Theorem 2.2 Let f ∈ A. If for all z ∈ E

Φn(µ, b, α)|an| ≤
1√
7

(10)

then Jα
µ,bf(z) is univalent in E.

Let f ∈ A. It sufficient to show that∣∣∣∣∣z2(Jα
µ,bf(z))

′

2(Jα
µ,bf(z))

2

∣∣∣∣∣ ≤ 1.

Now∣∣∣∣∣z2(Jα
µ,bf(z))

′

2(Jα
µ,bf(z))

2

∣∣∣∣∣ ≤
1 +

∞∑
n=2

nΦn(µ, b, α)|an|

2(1− 2
∞∑
n=2

[Φn(µ, b, α)])m|an| − (
∞∑
n=2

Φn(µ, b, α)|an|2)
.

The last inequality is less than 1 if the assertion (10) is hold. Thus in view of
Lemma 1.4, Jα

µ,bf(z) is univalent in E.

Theorem 2.3 Let f ∈ A. If for all z ∈ E
∞∑
n=1

n[2(n− 1) + (2µ− 1)]Φn(µ, b, α)|an| ≤ 2µ− 1, µ >
1

2
(11)

then Jα
µ,bf(z) is univalent in E.

Proof. Let f ∈ A. Then for all z ∈ E, we have

(1− |z|2µ)

∣∣∣∣∣z(Jα
µ,bf(z))

′′

(Jα
µ,bf(z))

′ + 1− µ

∣∣∣∣∣ ≤ (1 + |z|2)

∣∣∣∣∣z(Jα
µ,bf(z))

′′

(Jα
µ,bf(z))

′

∣∣∣∣∣+ |1− µ|

≤
2

∞∑
n=2

Φn(µ, b, α)[n(n− 1)]|an|

1−
∞∑
n=2

nΦn(µ, b, α)|an|
+ |1− µ|
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the last inequality is less than µ if the assertion (11) is hold. Thus is view of
Lemma 1.5, Jα

µ,bf(z) is univalent in E.

As applications of Theorems 2.1, 2.2 and 2.3, we have the following Theo-
rem.

Theorem 2.4 Let f ∈ A. If for all z ∈ E one of the inequality (9-11) holds
then

∞∑
n=1

(n− 1)|bn|2 ≤ 1, (12)

where z
Jαµ,bf(z)

= 1 +
∞∑
n=1

bnz
n.

Proof. Let f ∈ A. Then in view of Theorems 2.1, 2.2 or 2.3, Jα
µ,bf(z) is

univalent in E.

Hence by Lemma 1.6, we obtain the result.

Theorem 2.5 Let f ∈ A. If for all z ∈ E

∞∑
n=1

n[2(n− 1) +Re(v)]Φn(µ, b, α)|an| ≤ Re(v), Re(v) > 0 (13)

then

Gv(z) =

v

z∫
0

uv−1[Jα
µ,bf(z)]

′du

 1
v

is univalent in E.

Let f ∈ A. Then for all z ∈ E,

1− |z|2Re(v)

Re(v)

∣∣∣∣∣z(Jα
µ,bf(z))

′′

(Jα
µ,bf(z))

′

∣∣∣∣∣ ≤ 1 + |z|2Re(v)

Re(v)

∣∣∣∣∣z(Jα
µ,bf(z))

′′

(Jα
µ,bf(z))

′

∣∣∣∣∣
≤

2
∞∑
n=2

n(n− 1)Φn(µ, b, α)|an|

1−
∞∑
n=2

nΦn(µ, b, α)|an|

the last inequality is less than 1 if the assertion (13) is hold. Thus is view of
Lemma 1.7, Gv(z) is univalent in E.



Univalence Criteria for Analytic Functions... 29

3 Conclusion

Special functions such as HurwitzLerch zeta functions have been continuously
developed. Indeed, the theme of developments formula for Hurwitz- Lerach
Zeta functions and correlated functions has a long history, which can be traced
back to Goldbach and Euler. We obtained univalence conditions for analytic
functions connected with Hurwitz- Lerach Zeta functions.The proposed opera-
tors can be employed to generalize other types of convolution, differential, and
integral operators such as fractional operators or to establish several classes of
normalized regular functions.

4 Open Problem

The authors suggest to find necessary and sufficient conditions for negative
coefficients and study geometric and algebric properties, partial sums, subor-
dination and neighborhood results.
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