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Abstract

Let R be a 2—torsion free semiprime ring, a an automor-
phism and U a moncentral square-closed Lie ideal of R. An
additive mapping T : R — R is called a left (resp. right)
a—centralizer of R if T'(zvy) =T (x)a(y) (resp. T(zy) = a(x)T(y))
holds for all x,y € R. In this paper, we proved the following
result: i) If T (uvu) = a(u) T (v) a(u) for all u,v € U, then T is
a left a—centralizer, ii) If T(uvu) = T'(u)a(vu) (resp. T(uvu) =
a(uv)T(u)) for all u,v € U, then T is a left (resp. right) a-
centralizer on U.
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1 Introduction

Throughout, R will represent an associative ring with center Z. Recall that
a ring R is prime if xRy = (0) implies x = 0 or y = 0, and semiprime if
xRx = (0) implies = 0. An additive subgroup U of R is said to be a Lie
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ideal of R if [u,r] € U, for all w € U, r € R. U is called a square-closed Lie
ideal of R if U is a Lie ideal and u? € U for all u € U. According Zalar [13],
an additive mapping 7' : R — R is called a left (resp. right) centralizer of
R if T(xy) = T(x)y (resp. T(zy) = x2T(y)) holds for all z,y € R. If T is
both left as well right centralizer, then it is called a centralizer. This concept
appears naturally C*-algebras. In ring theory, it is more common to work
with module homorphisms. Ring theorists would write that T': Rr — Rpg is a
homomorphism of a ring module R into itself instead of a left centralizer. In
case T': R — R is a centralizer, then there exists an element A\ € C such that
T(x) = Az for all x € R and A € C, where C is the extended centroid of R.
A left (resp. right) Jordan centralizer T': R — R is an additive mapping such
that T'(z?) = T(x)x (resp. T(xz*) = 2T (x)) holds for all x € R. Zalar proved
that any left (right)Jordan centralizer on a 2—torsion free semiprime ring is a
left (right) centralizer.

Recently, in [1], Albag introduced the definition of a—centralizer of R, i.
e. an additive mapping 7" : R — R is called a left (resp. right) a—centralizer
of R if T(xy) = T(x)a(y) (resp. T(xy) = a(x)T(y)) holds for all z,y € R,
where is @ an endomorphism of R. If T is left and right a—centralizer then it
is natural to call a—centralizer. Clearly every centralizer is a special case of a
a—centralizer with o = idg. Also, an additive mapping T : R — R associated
with a homomorphism a : R — R if L,(z) = aa(xz)and R,(z) = a(z)a for a
fixed element a € R and for all x € R, then L, is a left a—centralizer and R,
is a right a—centralizer. A left (resp. right) Jordan a—centralizer T': R — R
is an additive mapping such that T'(2?) = T(z)a(z) (resp. T(z?) = a(z)T(x))
holds for all x € R, where is a an endomorphism of R. Albag generalized the
result of Zalar as follows: If a(Z) = Z then each left Jordan a—centralizer of
R is a left a—centralizer. In [4], Cortes and Haetinger proved this question
changing the semiprimality condition on R by the existence of a commutator
right (resp. left) nonzero divisor. By removing these conditions, Ko¢ and
Golbasgt have proved this theorem for the Lie ideal of the semiprime ring in [8].

On other hand, if T': R — R is a centralizer, where R is an arbitrary ring,
then T satisfies the relation

T(zyzx) = 2T (y)x, for all z,y € R.

It seems natural to ask whether the converse is true. More precisely, asking
for whether an additive mapping 7" on a ring R satisfying the above relation
is a centralizer. In [16], Vukman proved that the answer is affirmative in case
R is a 2—torsion free semiprime ring. The first aim of the present article
is a generalization of above result to the case a—centralizer of Lie ideal on
semiprime rings.

In [9], Molnar proved that if R is a 2-torsion free prime ring and T': R — R
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is an additive function such that
T(xyx) =T (x)yzx for all x,y € R

then T is a left (right) centralizer. Ali and Haetinger generalized the above
mentioned result for semiprime rings in [3]. The second aim of this paper
is a generalization of above result to the case a—centralizer of Lie ideal on
semiprime rings.

2 Results

Lemma 2.1 [6, Corollary 2.1] Let R be a 2—torsion free semiprime ring, U
a Lie ideal of R such that U € Z(R) and a,b € U.

i) If alUa = (0), then a = 0.

ii) If aU = (0) (or Ua = (0)), then a = 0.

i) If U is square closed and aUb = (0), then ab =0 and ba = 0.

Lemma 2.2 [8, Theorem 1] Let R be a 2—torsion free semiprime ring, U a
square closed Lie ideal of R, o an automorphism of R and T : R — R a left
(resp. right) Jordan a—-centralizer mapping of U into R. Then T is a left
(resp. right) a— centralizer mapping of U into R.

Throughout the study, since R is 2—torsion free ring, uv will be written
instead of 2uv for each u,v € U in order to facilitate the equations.

Lemma 2.3 Let R be a 2—torsion free semiprime ring, U a square-closed Lie
ideal of R and a,b,c € U. If avb + bve = 0 for all v € U, then (a + c)vb =0
for allv e U.

Proof. By the hypothesis, we get
avb + bve =0, for all v € U.
Replacing v by vbu in this equation, we have
avbub 4+ bvbuc = 0.
Multiplying the hypothesis on the right by ub, we obtain that
avbub + bvcub = 0.
If the last two equations are subtracted from each other, we find that

bu(buc — cub) = 0. (1)
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Replacing v by ucv in the last equation, we get
bucv(buc — cub) = 0.
Multiplying (1) on the left by cu, we have
cubv(buc — cub) = 0.
If the last two equations are subtracted from each other, we find that
(buc — cub)v(buc — cub) = 0.

By Lemma 2.1, we get buc = cub. Using the hypothesis, we obtain that
avb + cvb = 0. That is, (a + c¢)vb =0 for all v € U.

Theorem 2.4 Let R be a 2—torsion free semiprime ring, U a noncentral
square-closed Lie ideal of R, a an automorphism of R and o(U) = U, T(U) C
U. If T: R— R is an additive mapping such that T (uvu) = o (u) T (v) a (u)
for all u,v € U, then T s a left a—centralizer.

Proof. By the hypothesis, we get
T (uwvu) = a(u) T (v) a(u), for all u,v € U. (2)
Replacing u by u + w,w € U in the last equation, we have
T(u+w)v(ut+w)) =alu+w)T (v)a(u+ w)
and so,

T (uvu 4+ vvw + wou + wow) = a (u) T (v)
+a(w)T W a() +a(w)T (v)a(w).

Q
£
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Using the hypothesis, we obtain that
T (uwvw + wou) = a(u) T (v) a (w) + a(w) T (v) a (u) . (3)
Taking v by v and w by v respectively in equation (3), we have
T (vo+ovu?) =a(u)T (u)a @)+ o) T (v)a(u). (4)
Thus, replacing w by u? in equation (3), we see that
T (wu’ + vPvu) = a(u) T (v) o (v?) + o (¢) T (v) o (u) . (5)
Writting v by wovu in equation (4), we have

T (vou+wou®) = a (u) T (v) a (wou) + o (uow) T (u) o (u) - (6)
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Replacing v by u?v + vu? in the hypothesis, we have
T (u (v’v+vu*) u) = a(u) T (v’v + vu’) o (u)

and so,
T (v*ou +wou®) = a (u) T (v’v + vu®) o (u) . (7)

If (4) equation is used in (7) equation, we get
T (vPou +wvu?) = a (u?) T (u) o (vu) + a (uv) T (u) o (u?) . (8)

If (6) and (8) equations are used, we obtain that
o (u) T (u) a (wou)+a (wou) T (u) a (u) = a (v*) T (v) a (vu)+a (uw) T (v) a (u?) .
That is,

a(u) [T (u),a(w]av)a(u) +a(u)a)lo(w),T @] o) = 0.
That is,

a () [T (u), a(u)]a)a(u) —a(w) o @) [T (w),a@)]a(@) =0 (9)
Since a(U) = U, we get

a(u) [T (u), a(uw)]va (u) = a(u) v [T (v), a(w)] alu) = 0.
By Lemma 2.3, we get
(o (u) [T (), ()] = [T (), @ ()] () Jvex (u) = 0.

That is,
o (u), [T (), e (w)] vex (u) = 0. (10)

Replacing v by v [T (u) , & (u)] in equation (10), we have
o (), [T (u), a (w)]] v [T () , o (w)] e () = 0. (11)
Multiplying (10) on the right by [T (u),« (u)], we obtain that
o (), [T (u) @ (w)]] ver () [T' (u) , @ (u)] = 0. (12)
Subtracting (11) from (12), we arrive at
o (w), [T (), o ()] ol (), [T (u) , @ (u)]] = 0.
By Lemma 2.1, we have

[ov (u) , [T (u) ; e (w)]] = 0. (13)
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Replacing © by v + v in this equation and using this equation, we get

Putting —u for w in last equation, we have

By comparing in two last equations and since R is 2—torsion free, we obtain

that

[ (u), [T (), e ()]] + [a (), [T (v), e ()]} + e (v), [T (u) , o (w)]] = 0. (14)

Replacing v by wvu in (14) and using (14), (1) and (14), we get
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Using equation (13), we get
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Using equation (9), we obtain that
o (u?) a () [T (u),aw)] = [T (u), o) a)a(u®) =0.
Multiplying last equation on the left by a(u), we get
a(v?) a @) [T (u),aw)] — o) [T (u),o(w)al)o(w?) =0 (15)
and using equation (9), we get
a(u?) a () [T (u),aw)] —a(u) o) [T (u),ow)]a(u’) =0. (16)
Multiplying equation (15) on the left by 7" (u), we see that
T (u) o (v’) a () [T (v), (W] =T (u) o (u) [T (u), o (u)] @ (v) o (u?) = 0.
Replacing v by o™ (T (u)) v in (16), we get
a (W) T (w)a @) [T (u),o(u)] —aw) T (w)a@) [T (u),ow)]a(uw?) =0.
If the last two equations are used, we see that

0 = [T(uw),a@)]a@)[T (), o] =T a )T (w),ow)]a@)o(u?)
+a(u) T (u) o (v) [T (u) , o (u)] o (u?)

and using equation (9), we get

0 = [T(w),a@)]a()Tw,aw)]-Twala@)a )
o ()T (w)a () [T (u),a ()] o (u?)

and so
[T (u), (u3)} a () [T (u),a(w)]—[T (u),a(w)]a@) [T (u),au)] o (UZ) = 0.
By Lemma 2.3, we have
(7 (W) (6¥)] ~ [T (), o )] @ (62))a () [T (u) s ()] = O,
and so
(o (u) [T (u), e (w)] e (u) + a (u®) [T (v), o (w)])a (v) [T (), a(u)] = 0.
Using equation (13), we get

((u) [T (u) ;o (u)] o (u) + a () [T (v), @ (w)] a(w) a (@) [T (v), o (u)] = 0.
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That is,
200 (u) [T (u) , a (u)] a (u) o (0) [T (u) , o (u)] = 0.

Since R is 2-torsion free , we get
a(u) [T (u) , o (w)] e (w) o (v) [T (u) , o ()] = 0. (17)
Replacing v by vu in this equation, we get
a () [T (u), o (u)] a(u)a(v)a () [T (u), o (u)] = 0.

Multiplying equation this equation on the right by a(u), we get

and so,

By Lemma 2.1, we get
a(u) [T (u),a(u)]a(u) =0. (18)
Replacing v by vu in (9), we get
a(u) [T (u),a(u)]a)a(u)a(u) —a(u)a@)a) T (u),a(w)]a(u) =0.
Using equation (18), we have
o (u) [T (u), o (u)] a (v) o (u®) = 0. (19)
Replacing v by va~! (T (u)) in this equation, we have
a(u) [T (u), o (u)]a ()T (u) o (u?) = 0.
Multiplying (19) on the right by 7' (u), we have
o (u) [T (u), o (u)] a(v) o (u®) T (u) = 0.
If the last two equations are used, we see that
a(u) [T (u), o (u)]a (@) [T (u),o(w?)] =0.
That is,

a(u) [T (u), o (w]a () [T (u), a ()] o (u)to () [T (u), a ()] o (v) o (u) [T (u), o (u)] = 0.
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Using equation (13), we have

2a () [T'(u) , a (u)] o (v) & () [T () , @ (u)] = 0.
Since R is 2—torsion free, we get

a(u) [T (u), o (w)]a(v)a(u) [T (u), o ()] =0

and so

By equation (13), we have
[T (u), & (u)] a(u) = 0.
Replacing u by v + v in this equation, we get

0 = [T(w,a@)]a(w)+[T @), a)+[T©),a)]a()
+[T(u), a ()] o (u) + [T (u), a ()] e (v) + [T (v), o (v)] v (w) -

Writing v by —u in tis equation, we have

0 = [T(u),a()]a()+[T(v),aw)]a) [T (),ow)]a
+[T(u), a ()] o (u) = [T (u) ;o (v)] e (v) = [T (v) ;v (v)] e (w) -

If the last two equations are used, we see that
2([T (u) o (u)] v (v) + [T (v), @ (w)] e (w) + [T (u) , @ (v)] e () = 0.
Since R is 2-torsion free, we have
[T (u), e (w)]a (v) + [T (v), e (w)] e () + [T (), @ (v)] e (u) = 0.

Multiplying the last equation on the right by [T (u) , o (u)] and using (20), we
have
[T (u) ;e ()] e () [T (u) , @ ()] = 0.

By Lemma 2.1, we obtain that
[T (u), a (u)] = 0. (21)
Replacing w by u? in (3), we obtain that

T (wu’ + v?vu) = a(u) T (v) o (v?) + o (u®) T (v) o (u) . (22)
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Taking v by uv 4+ vu in the hypothesis, we get
T (vPou +uwvu?) = a (u) T (uwv 4 vu) a (u) (23)
Subtracting (22) from (23), we arrive at
a(u) T (w +vu) o (u) —a (W) T (v)a(v?) — o (u®) T (v) o (u) = 0.

That is, a (u) 8 (u,v) a(u) = 0, where 5 (u,v) = T (vv +vu) — T (v) a (u) —
a(u)T (v). Replacing u by u + w,w € U in this equation and using this
equation, we get

0 =a(u)p(u,v)a g a
+a (u) B (w,v) a(w) + o (w) B (u,v) a(u) (24)
+a (w) 5 (u,v) a

Replacing u by —u in the last equation, we see that

0 =a(u)B(uv)aw)+alw)swo)al)
—ar(u) B (w,v) @ (w) + a (w) B (u,v) o () (25)
—ar(w) B (u,0) @ (w) — a (w) B (w, v) @ ().

Subtracting (24) from (25) and since R is 2-torsion free, we arrive at
a(u) f (u,v) a(w) + o (u) B (w,v) a(u) + a(w) B (u,v) o (u) =0
Multiplying the last equation on the right by £ (u,v) a (u), we have

0 =a(u)B(wv)aw)s (o)) +alu)swo)alu)s (o) a ()
T (w) B (u,v) a (u) B (u,0) a (u)

and so,
a(u) B (u,v) o (w) B (u, v) a (u) = 0. (26)
Replacing u by u + v in (21) and using (21), we get

[T (u), a ()] + [T (v), a (u)] = 0. (27)
Writing v by wv 4+ vu in the last equation and using (21), we get
a(u) [T (u),a ()] + [T (u),a ()] a(u) + [T (uwv + vu), o (u)] = 0.
Using (27) in the last equation, we have
—a(u) [T (v),a(w)] =T (w),a ()] a(u)+ [T (vw+vu),a(u)] =0.
That is,

0 = T(w+ovu)aw) —a(w)T (uww+ovu) —a(u)T (v)a(u)
+a(u)T (v) =T (v)a(u?) + a(u) T (v) a(u)
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and so
0 = {T(w+ovu)—TwW) a(w)—a(u)T (v)}alu)
—a(u) {T (wv+vu) =T (v)a(u) —a(u)T (v)}
We obtain that
1B (u.v),a(u)] = 0. (28)

That is f (u,v) a (u) = a (u) 8 (u,v). Using this equation in equation (26), we
obtain that

B (u,v) a(u) o (w) B (u, v) a (u) = 0.
Since a(U) = U, we have

B (u,v) o (u) UB (u,v) a (u) = (0).
By Lemma 2.1, we get
B (u,v) a(u) = 0. (29)
Using equation (28), we get
a(u) f (u,v) = 0. (30)
Replacing u by u + w in (29) and using (29), we see that
B (u,v) @ (w) + B (w,v) o (u) = 0.
Multiplying the last equation on the right by 5 (u,v), we get

0=0(u,v)a(w)p (u,v)+ 5 (w,v)a(u) B (u,v).

Using equation (30), we have
8 (u,0) o (w) § (,0) = 0

and so (5 (u,v)UB (u,v) = (0). By Lemma 2.1, we get §(u,v) = 0, for all
u,v € U. That is, T (uv +vu) = T (v) o (u) + « (u) T (v). Replacing v by u,
we see that

T (W +v*) =T (uaw+a)T (u).

and so,
2T (v*) =T (u) a (u) + a (u) T (u) .

Using equation (21), we see that
2T (v?) = 2T (u) o (u) .

Since R is 2—torsion free, we arrive at T (u?) = T (u) a (u) for all u € U. By
Lemma 2.2, we conclude that T is a left a—centralizer mapping of U into R.
This proof the completed.
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Theorem 2.5 Let R be a 2—torsion free semiprime ring, U a nocentral square-
closed Lie ideal of R, o an automorphism of R and a(U) = U, T(U) C U.
If T': R — R is an additive mapping such that T (uvvu) = T'(u)a(vu) (resp.
T(uwvu) = o(uv)T(u)) for all u,v € U, then T is a left (resp. right) a-
centralizer on U.

Proof. By the hypothesis, we have
T(uvu) = T'(u)a(vu), for all u,v € U.
Replacing u by u + w,w € U in the hypothesis, we get
T((u+ w)v(u+w)) =T(u)a(vu) + T(u)a(vw) + T(w)a(vu) + T (w)a(vw).
On the other hand, we have

T((u+w)v(u+w)) = T(ww+ wou+ uvu + wow)
= T(uvw + wou) + T'(u)a(vu) + T(w)a(vw)

If the last two equations are used, we see that
T(vvw + wou) = T (u)a(vw) + T(w)a(vu).

Writing w by u? in the last equation, we find that

T (uvu? 4 v?ou) = T(w)a(vu?) + T(u?)a(vu).
Replacing v by uv + vu in the hypothesis and using the hypothesis, we get

T (vvu? 4 v?vu) = T(u)a(uvu) + T(u)o(vu?).
By comparing in two last equations, we obtain that

T(u*)a(vu) — T(u)o(uvu) = 0.

That is,
A(u)a(vu) = 0, for all u,v € U,

where A(u) = T'(u?) — T'(u)a(u). Using and a(U) = U, we see that
A(u)wa(u) = 0, for all u,w € U. (31)
Multiplying (31) on the left by a(u), we have
a(u)A(u)wa(u) = 0, for all u,w € U.
Multiplying the last equation on the right by A(u), we have
a(u)A(uv)wa(u)A(u) = 0, for all u,w € U.
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By Lemma 2.1, we get

a(u)A(u) =0, for all u € U. (32)
On the other hand, replacing w by a(u)wA(u) in equation (32), we get

A(u)a(u)wA(u)a(u) = 0.

Again, by Lemma 2.1, we have

A(u)a(u) = 0, for all u € U. (33)
Replacing v by u + v in this equation, we obtain that

A(u +v)a(u) + A(u + v)a(v) = 0. (34)

That is,

Alu+v) = T((u+v)?) —T(u+v)a(u+v)
= (T(w +vu) = T(u)a(v) = T(v)a(u))
+T(u?) = T(u)a(u) + T(v?) = T(v)o(v)
= B(u,v) + A(u) + A(v).

where B(u,v) = T'(uv + vu) — T'(u)a(v) — T'(v)a(u). Using the last equation
in equation (34), we get

A(u)a(u) + A(u)a(v) + Bu, v)a(u) + A(v)a(u) + B(u, v)a(v) + A(v)a(v) = 0.
Using equation (33), we see that

A(u)a(v) + B(u,v)a(u) + A(v)a(u) + B(u,v)a(v) = 0.
Replacing u by —u in this equation, we have

A(u)a(v) + B(u,v)a(u) — A(v)a(u) — B(u, v)a(v) = 0.
If the last two equations are used, we see that

2(A(u)a(v) + B(u,v)a(u)) = 0.
Since R is a 2—torsion free, we get
A(u)a(v) + B(u,v)a(u) = 0.

Multiplying the last equation on the right by A(u), we have

A(u)a(v)A(u) + B(u,v)a(u)A(u) = 0.
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Using equation (32), we get A(u)a(v)A(u) = 0. Since a(U) = U, we have
A(u)UA(u) = 0. By Lemma 2.1, we conclude that A(u) = 0,for all u € U.
That is, T(u?) = T(u)a(u),for all w € U. We conclude that T is a left a-
centralizer on U by Lemma 2.2. This completes the proof.
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3 Open Problem

Our hypotheses are dealt with on the semiprime ring. Considering all hypothe-
ses on the semiprime ring gives more general results. The article is discussed
for Lie ideal on semiprime ring. The conditions discussed here can be consid-
ered for (o, 7)-Lie ideal.
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