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1,2Department of Mathematics, Faculty of Science, Sivas Cumhuriyet University,
Sivas,Türkiye

e-mail:ogolbasi@cumhuriyet.edu.tr
e-mail:seymaergun77@gmail.com

Received 10 January 2024; Accepted 3 March 2024

Abstract

Let R be a ring, P a prime ideal of R and d : R → R a
semiderivation associated with an automorphism g of R. If any
one of the following holds then d(R) ⊆ P or R/P is commutative
integral domain: i) d([x, y]) ∈ P, ii) d(xoy) ∈ P, iii) d([x, y]) ±
[x, y] ∈ P, iv) d(xoy)±(xoy) ∈ P, v) d([x, y])±(xoy) ∈ P, vi) d(xoy)±
[x, y] ∈ P, vii) d([x, y])± xm[x, y]xn ∈ P, viii) d(xoy)± xm(xoy)xn ∈
P, ix) d([x, y]) ± xm(xoy)xn ∈ P, x) d(xoy) ± xm[x, y]xn ∈ P, xi)
d(xy) ± xy ∈ P, xii) d(xy) ± yx ∈ P, xiii) d(x)d(y) ± xy ∈ P, xiv)
d(x)d(y)± yx ∈ P, for all x, y ∈ R,m, n ∈ Z.
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1 Introduction

Let R will be an associative ring with center Z. Recall that a proper ideal P
of R is said to be prime if for any x, y ∈ R, xRy ⊆ P implies that x ∈ P or
y ∈ P. The ring R is prime if and only if (0) is a prime ideal of R, or equiently
a ring R is prime if for x, y ∈ R, xRy = (0) implies either x = 0 or y = 0. For
any x, y ∈ R the symbol [x, y] represents the Lie commutator xy− yx and the
Jordan product xoy = xy + yx.

The derivations and their generalizations play major role in mathematics,
economics, quantum physics and biology such as chemotheraphy. Because of
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that the correlation between derivations and the algebraic structures has be-
come an exciting subject in the the last years. Over the last few decades, a
number of authors have investigated the commutativity of the ring R or some
appropriate subsets of R satisfying certain differantial identities with deriva-
tion. With the development of the theory, different definitions of derivations
have been made (generalized derivation, (α, β)−derivation, homoderivation
etc.). The concept of derivation in rings was introduced by Posner in [4]. An
additive mapping d : R → R is called a derivation if d(xy) = d(x)y + xd(y)
holds for all x, y ∈ R. For a fixed a ∈ R, the mapping Ia : R → R given by
Ia(x) = [a, x] is a derivation which is said to be an inner derivation. This
is the very first example of derivation. One of the new derivation defini-
tions is the semiderivation definition. The notion of semiderivations first time
introduced by in Bergen in [5]. An additive mapping d : R → R is said
to be a semiderivation if there exists a function g : R → R such that (i)
d(xy) = d(x)g(y) + xd(y) = d(x)y + g(x)d(y) and (ii) d(g(x)) = g(d(x)) hold
for all x, y ∈ R. In case g is an identity map of R, then all semiderivations
associated with g are merely derivations. Hence semiderivation covers concept
of the derivation. On the other hand, if g other main motivating examples are
of the form d = g− 1 where g is any ring endomorphism of R such that g ̸= 1.
Then d is a semiderivation with associated map g which is not a derivation.

Recently, some authors adopted a new approach by considering algebraic
identities with derivations involving prime ideal without primenees assumption
on the considered ring (see, e.g., [1], [2], [3], [8] and references therein). They
characterized the commutativity of a quotient ring R/P.

In [7], Daif and Bell proved that R is semiprime ring, I is a nonzero ideal
of R and d is a derivation of R such that d([x, y]) = ±[x, y], for all x, y ∈ I,
then R contains a nonzero central ideal. On the other hand, in [6], Ashraf
and Rehman showed that R is prime ring with a nonzero ideal I of R and
d is a derivation of R such that d(xy) ± xy ∈ Z, for all x, y ∈ I, then R is
commutative.

In the present paper is motivated by the previous results. We aim to inves-
tigate the commutativity of quotient ring R/P where R any ring and P is prime
ideal of R which admits a semiderivations associated with an automorphism
g of R are satisfying some identities acting on prime ideal P. The material in
this work is a part of first author’s Master Thesis which is supervised by Prof.
Dr. Öznur Gölbaşı.

2 Results

Throughout the paper, we will make some extensive use of the basic commu-
tator identities for all x, y, z ∈ R :

[x, yz] = y[x, z] + [x, y]z
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[xy, z] = [x, z]y + x[y, z]
xo(yz) = (xoy)z − y[x, z] = y(xoz) + [x, y]z
(xy)oz = x(yoz)− [x, z]y = (xoz)y + x[y, z].

Lemma 2.1 [8, Lemma 1.3]Let R be a ring, P a prime ideal of R. If any of
the following conditions is satisfied for all x, y ∈ R, then R/P is commutative
integral domain.

i) [x, y] ∈ P

ii) xoy ∈ P

Theorem 2.2 Let R be a ring, P a prime ideal of R and d be a semiderivation
associated with a map g of R. If d([x, y]) ∈ P, for all x, y ∈ R, then d(R) ⊆ P
or R/P is commutative integral domain.

Proof. By our hypothesis, we get

d([x, y]) ∈ P, for all x, y ∈ R. (1)

Writing yx for y in (1) and using this, we obtain that

d([x, y]x) = d([x, y])g(x) + [x, y]d(x) ∈ P

and so

[x, y]d(x) ∈ P, for all x, y ∈ R. (2)

Taking zy, z ∈ R for y in (2) and using (2), we get

[x, z]Rd(x) ⊆ P, for all x, z ∈ R. (3)

Since P is prime, we get

[x, z] ∈ P or d(x) ∈ P, for all x, z ∈ R.

Let L = {x ∈ R | [x, z] ∈ P, for all z ∈ R} and K = {x ∈ R | d(x) ∈ P}.
Clearly each of L and K is additive subgroup of R such that R = L ∪ K.
But, a group can not be the set-theoretic union of its two proper subgroups.
Hence L = R or K = R. In the first case, we have [x, z] ∈ P, for all z ∈ R,
and so R/P is an integral domain by Lemma 2.1. In the second case, we get
d(R) ⊆ P . This completes the proof.

Theorem 2.3 Let R be a ring, P a prime ideal of R and d be a semiderivation
associated with a map g of R. If d(xoy) ∈ P, for all x, y ∈ R, then d(R) ⊆ P
or R/P is commutative integral domain.
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Proof. By our hypothesis, we get

d(xoy) ∈ P, for all x, y ∈ R. (4)

Writing yx for y in (4) and using this, we find that

d((xoy)x) = d(xoy)g(x) + (xoy)d(x) ∈ P

and so
(xoy)d(x) ∈ P, for all x, y ∈ R. (5)

Substituting zy, z ∈ R for y in (5) and using this expression, we arrive at

[x, z]Rd(x) ⊆ P, for all x, z ∈ R.

Arguing the same methods after (3) in the proof of Theorem 2.2, we obtain
the required result.

Theorem 2.4 Let R be a ring, P a prime ideal of R and d be a semiderivation
associated with an automorphism g of R. If d([x, y])±[x, y] ∈ P, for all x, y ∈ R,
then d(R) ⊆ P or R/P is commutative integral domain.

Proof. If d = 0, then we get

[x, y] ∈ P, for all x, y ∈ R.

By Lemma 2.1, we get R/P is commutative integral domain.
Now, we assume that d ̸= 0. By our hypothesis, we have

d([x, y])± [x, y] ∈ P, for all x, y ∈ R. (6)

Replacing y by yx in (6) and using this equation, we arrive that

d([x, y]x)± [x, y]x = d([x, y])x+ g([x, y])d(x)± [x, y]x ∈ P

and so
g([x, y])d(x) ∈ P, for all x, y ∈ R.

Substituting zy, z ∈ R for y in this expression and using this, we get

g([x, z])g(y)d(x) ∈ P, for all x, y ∈ R.

Since g is an automorphism of R, we have

g([x, z])Rd(x) ⊆ P, for all x, z ∈ R. (7)

Let L = {x ∈ R | g([x, z]) ∈ P, for all z ∈ R} and K = {x ∈ R | d(x) ∈ P}.
Clearly each of L and K is additive subgroup of R such that R = L∪K. But,
a group can not be the set-theoretic union of its two proper subgroups. Hence
L = R or K = R. In the first case, we obtain that [x, z] ∈ P, for all z ∈ R
using g is an automorphism or R, and so R/P is an integral domain by Lemma
2.1. In the second case, we get d(R) ⊆ P . This completes the proof.
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Theorem 2.5 Let R be a ring, P a prime ideal of R and d be a semiderivation
associated with an automorphism g of R. If d(xoy)±(xoy) ∈ P, for all x, y ∈ R,
then d(R) ⊆ P or R/P is commutative integral domain.

Proof. If d = 0, then we get

xoy ∈ P, for all x, y ∈ R.

By Lemma 2.1, we get R/P is commutative integral domain.
Now, we get d ̸= 0. By our hypothesis, we have

d(xoy)± (xoy) ∈ P, for all x, y ∈ R. (8)

Replacing y by yx in equation (8) and using this, we arrive that

d((xoy)x)± (xoy)x = d(xoy)x+ g(xoy)d(x)± (xoy)x ∈ P

and so
g(xoy)d(x) ∈ P, for all x, y ∈ R.

Substituting zy, z ∈ R for y and using this equation, we find that

g([x, z])Rd(x) ⊆ P, for all x, z ∈ R.

We obtain the required result using the same arguments after (7) in the proof
of Theorem 2.4.

Theorem 2.6 Let R be a ring, P a prime ideal of R and d be a semiderivation
associated with an automorphism g of R. If d([x, y])± (xoy) ∈ P, for all x, y ∈
R, then d(R) ⊆ P or R/P is commutative integral domain.

Proof. If d = 0, then we get

xoy ∈ P, for all x, y ∈ R.

Hence R/P is commutative integral domain by Lemma 2.1.
Now, we assume d ̸= 0. By our hypothesis, we have

d([x, y])± (xoy) ∈ P, for all x, y ∈ R. (9)

Replacing yx by y in (9) and using this, we get

g([x, y])d(x) ∈ P, for all x, y ∈ R.

Taking zy, z ∈ R for y in this equation and using this, we have

g([x, z])Rd(x) ⊆ P for all x, z ∈ R.

This equation is the same as (7). Arguing the same lines in the proof of
Theorem 2.4, we get the required result.
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Theorem 2.7 Let R be a ring, P a prime ideal of R and d be a semiderivation
associated with an automorphism g of R. If d(xoy)±[x, y] ∈ P, for all x, y ∈ R,
then d(R) ⊆ P or R/P is commutative integral domain.

Proof. If d = 0, then [x, y] ∈ P, for all x, y ∈ R. By Lemma 2.1, we find that
R/P is commutative integral domain.
Now, we have d ̸= 0 and

d(xoy)± [x, y] ∈ P, for all x, y ∈ R. (10)

Replacing yx by y in (10) and using this, we get

g(xoy)d(x) ∈ P, for all x, y ∈ R.

Substituting zy, z ∈ R for y in this equation and using this, we find that

g([x, z])Rd(x) ⊆ P, for all x, z ∈ R.

Using the same arguments after (7) in the proof of Theorem 2.4, we obtain the
required result.

Theorem 2.8 Let R be a ring, P a prime ideal of R and d be a nonzero
semiderivation associated with an automorphism g of R. If d ([x, y])±xm [x, y]xn ∈
P, for all x, y ∈ R,m, n ∈ Z, then d(R) ⊆ P or R/P is commutative integral
domain.

Proof. By the hypothesis, we have

d ([x, y])± xm [x, y]xn ∈ P, for all x, y ∈ R. (11)

Replacing y by yx in equation (11), we get

d ([x, y]x)± xm [x, y]xn+1 ∈ P

and so

d ([x, y])x+ g([x, y])d(x)± xm [x, y]xn+1 ∈ P, for all x, y ∈ R.

Using the hypothesis, we obtain that

g([x, y])d(x) ∈ P, for all x, y ∈ R.

Taking zy, z ∈ R for y in this equation and using this, we have

g([x, z])Rg(x) ⊆ P, for all x, z ∈ R.

Using the same arguments after (7) in the proof of Theorem 2.4, we get the
required result.
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Theorem 2.9 Let R be a ring, P a prime ideal of R and d be a nonzero
semiderivation associated with an automorphism g of R. If d (x ◦ y)± xm(x ◦
y)xn ∈ P, for all x, y ∈ R,m, n ∈ Z, then d(R) ⊆ P or R/P is commutative
integral domain.

Proof. We assume that

d (x ◦ y)± xm(x ◦ y)xn ∈ P, for all x, y ∈ R. (12)

Replacing y by yx in equation (12), we obtain

d (x ◦ yx)± xm(x ◦ yx)xn ∈ P

and so

d ((x ◦ y)x)± xm((x ◦ y)x)xn ∈ P, for all x, y ∈ R.

That is

d (x ◦ y)x+ g(x ◦ y)d(x)± xm(x ◦ y)xn+1 ∈ P.

Using the hypothesis, we get

g(x ◦ y)g(x) ∈ P, for all x, y ∈ R.

Substituting zy, z ∈ R for y in this equation and using this, we find that

g([x, z])Rg(x) ⊆ P, for all x, z ∈ R.

Arguing the same methods after (7) in the proof of Theorem 2.4, we obtain
the required result.

Theorem 2.10 Let R be a ring, P a prime ideal of R and d be a nonzero
semiderivation associated with an automorphism g of R. If d ([x, y])±xm(xoy)xn ∈
P, for all x, y ∈ R,m, n ∈ Z, then d(R) ⊆ P or R/P is commutative integral
domain.

Proof. Let assume that

d ([x, y])± xm(xoy)xn ∈ P, for all x, y ∈ R. (13)

Writing y by yx in (13) and using this equation, we arrive that

d ([x, yx])± xm(x ◦ yx)xn ∈ P

and so

d ([x, y]x)± xm((x ◦ y)x)xn ∈ P, for all x, y ∈ R.
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Hence we get

d ([x, y])x+ g([x, y])d(x)± xm(x ◦ y)xn+1 ∈ P.

Using the hypothesis, we have

g([x, y])d(x) ∈ P, for all x, y ∈ R. (14)

Taking zy, z ∈ R for y in equation (14) and using this, we have

g([x, z])Rg(x) ⊆ P, for all x, z ∈ R.

This equation is same as (7) in the proof of Theorem 2.4. Arguing the same
techniques therein, we get the required result.

Theorem 2.11 Let R be a ring, P a prime ideal of R and d be a nonzero
semiderivation associated with an automorphism g of R. If d(xoy)±xm [x, y]xn ∈
P, for all x, y ∈ R,m, n ∈ Z, then d(R) ⊆ P or R/P is commutative integral
domain.

Proof. Let assume that

d(xoy)± xm [x, y]xn ∈ P, for all x, y ∈ R. (15)

Writing y by yx in (15) and using this equation, we arrive that

d (x ◦ yx)± xm[x, yx]xn ∈ P

and so
d ((x ◦ y)x)± xm([x, y]x)xn ∈ P, for all x, y ∈ R.

That is
d (x ◦ y)x+ g(x ◦ y)d(x)± xm[x, y]xn+1 ∈ P.

Using the hypothesis, we get

g(x ◦ y)d(x) ∈ P, for all x, y ∈ R.

Substituting zy, z ∈ R for y in this equation and using this, we find that

g([x, z])Rd(x) ⊆ P, for all x, z ∈ R.

By the same arguments after the equation (7) in the proof of Theorem 2.4, we
obtain the required result.

Theorem 2.12 Let R be a ring, P a prime ideal of R and d be a semideriva-
tion associated with an automorphism g of R. If d(xy)±xy ∈ P, for all x, y ∈ R,
then d(R) ⊆ P or R/P is commutative integral domain.
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Proof. If d = 0, then we get xy ∈ P, for all x, y ∈ R from the hypothesis, and
so [x, y] ∈ P, for all x, y ∈ R. By Lemma 2.1, we find that R/P is commutative
integral domain.
Now, we assume that d ̸= 0.
By our hypothesis, we get

d(xy)± xy ∈ P, for all x, y ∈ R. (16)

Replacing y by yz in (16), we get

(d(xy)± xy)z + g(xy)d(z) ∈ P (17)

and so
g(xy)d(z) ∈ P, for all x, y ∈ R. (18)

Since g is an automorphism of R, we have

xRd(z) ∈ P, for all x, y ∈ R.

Since P is prime, we get

x ∈ P or d(z) ∈ P, for all x, z ∈ R.

If x ∈ P, for all x ∈ R, then we obtain that P = R, and it contradicts that P
is prime ideal of R. So, we get d(R) ⊆ P . This completes the proof.

Theorem 2.13 Let R be a ring, P a prime ideal of R and d be a semideriva-
tion associated with an automorphism g of R. If d(xy)±yx ∈ P, for all x, y ∈ R,
then d(R) ⊆ P or R/P is commutative integral domain.

Proof. If d = 0, then we find that R/P is commutative integral domain using
the same arguments in begining of Theorem 2.12.
Now, we get d ̸= 0.
Assume that

d(xy)± yx ∈ P, for all x, y ∈ R.

Taking yz instead of y in this equation, we have

d(xy)z + g(xy)d(z)± yzx ∈ P, for all x, y, z ∈ R.

For all x, y, z ∈ R, we can write this equation

d(xy)z + g(xy)d(z)± yzx+ yxz − yxz ∈ P, for all x, y, z ∈ R

and so

(d(xy)± yx)z + g(xy)d(z)± y[z, x] ∈ P, for all x, y, z ∈ R.
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Using the hypothesis, we arrive at

g(xy)d(z) + y[x, z] ∈ P, for all x, y, z ∈ R. (19)

Replacing z by x in (19) and using this, we get

g(xy)d(x) = 0, for all x, y ∈ I.

This equation is same as (18) in the proof of Theorem 2.12. Arguing the same
techniques therein, we get the required result.

Theorem 2.14 Let R be a ring, P a prime ideal of R and d be a semideriva-
tion associated with an automorphism g of R. If d(x)d(y) ± xy ∈ P, for all
x, y ∈ R, then d(R) ⊆ P or R/P is commutative integral domain.

Proof. If d = 0, then we get xy ∈ P, for all x, y ∈ R in the hypothesis. We
had done in the proof of Theorem 2.12. So, we have d ̸= 0.
By our hypothesis, we get

d(x)d(y)± xy ∈ P, for all x, y ∈ R.

Replacing y by yz in this equation and using the hypothesis, we get

d(x)d(y)z + d(x)g(y)d(z)± xyz ∈ P,

and so
d(x)g(y)d(z) ∈ P, for all x, y, z ∈ R.

Since g is an automorphism of R, we have

d(x)Rd(z) ∈ P, for all x, y, z ∈ R

Using P is a prime ideal of R, we obtain that d(R) ⊆ P. This completes the
proof.

Theorem 2.15 Let R be a ring, P a prime ideal of R and d be a semideriva-
tion associated with an automorphism g of R. If d(x)d(y) ± yx ∈ P, for all
x, y ∈ R, then d(R) ⊆ P or R/P is commutative integral domain.

Proof. Using the same arguments begining of the proof of Theorem 2.12, we
arrive at R/P is commutative integral domain in the case of d = 0.
Now, we have d ̸= 0. By our hypothesis, we get

d(x)d(y)± yx ∈ P, for all x, y ∈ R.

Replacing y by yx in this equation and using the hypothesis, we have

d(x)d(y)x+ d(x)g(y)d(x)± xyx ∈ P,
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and so
(d(x)d(y)± xy)x+ d(x)g(y)d(x) ∈ P.

By the hypothesis, we find that

d(x)g(y)d(z) ∈ P

Since g is an automorphism of R and P is a prime ideal of R, we obtain that
d(R) ⊆ P. This completes the proof.

3 Open Problem

How to generalize these theorems for a semiprime ideals of R? Are the results
remain valid if we suppose that g is only map ?
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