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Abstract

The Grundy coloring of a graph G is a proper vertex col-
oring in which every node colored with Ck is adjacent with all
least colors of Ck. The grundy number Γ(G) is the maximum
number of colors needed for proper grundy vertex coloring. In
this paper, we find the accurate values of grundy chromatic
number for splitting graph of cycle graph, path graph, pan
graph, fan graph and double fan graph which are symbolised by
Γ[S(Cn)], Γ[S(Pn)], Γ[S(n − pan)], Γ[S(F1,n)] & Γ[S(F2,n)] respec-
tively.
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1 Introduction

In this, the Graph G = {V (G), E(G)} we use is an undirected, simple, con-
nected & finite graph. We follow [2, 6] for basic notations such that V (G),
E(G), △(G) & δ(G) are the vertex set, edge set, maximum & minimum degree
of G respectively. Throughout this paper, we derive grundy chromatic number
for some splitting graphs. The notion of splitting graph was initiated by E.
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Sampathkumar and H.B. Walikar in 1981 [1]. The main concept of splitting
graph of G is to take a new vertex V

′ ∀ V ∈ G & join each V
′
to neighbors of V

in G. And the grundy chromatic number was initially studied by P M Grundy
regarding combinatorial games for directed version in 1939 but was properly
introduced later by Claude A. Christen and Stanley M. Selkow in 1979 for
undirected version. A Grundy k-coloring of G is a proper k-coloring of V (G)
such that ∀ v ∈ V (G) colored by smallest integer which has not appeared as
color of any of its neighbors [3, 4, 7]. The grundy chromatic number Γ(G)
is the largest integer k for which there exists a grundy k-coloring of G [7].
This can also be predicted by using greedy coloring strategy which considers
the vertices of graph in some sequence & color them first available color. It
is evident that µ(G) ≤ χ(G) ≤ Γ(G) ≤ △(G) + 1 where µ(G) is the largest
clique of G [5].

2 Preliminaries

[5] A Grundy n-coloring of G is an n-coloring of G such that ∀ color Ct, every
node colored with Ct is adjacent to atleast one node colored with Cs ∀ Cs < Ct.
The Grundy chromatic number Γ(G) is the maximum number n such that G
is Grundy n-coloring.

[1, 8] For every vertex V of a graph G, take a new vertex V
′
. Join V

′
to

all vertices of G adjacent to V . The graph S(G) thus obtained is called the
splitting graph of G.

The n-pan is obtained by connecting a cycle graph Cn with a singleton
graph by an edge.

[9] The fan graph F1,n is obtained by joining every vertex in Pn with K̄1

where K̄1 is the complement of complete graph with one vertex and Pn is a
path on n vertices.

[9] The double fan graph F2,n is obtained by joining every vertex in Pn

with the vertices in K̄2 where K̄2 is the complement of complete graph with
two vertices and Pn is a path on n vertices.

3 Main results

Here, we concentrate on exact values of Grundy chromatic number for splitting
graph on cycle graphs, path graphs, pan graphs, fan graphs and double fan
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graphs which are symbolised by Γ[S(Cn)], Γ[S(Pn)], Γ[S(n− pan)], Γ[S(F1,n)]
and Γ[S(F2,n)] respectively.

Theorem 3.1. For n ≥ 3, the grundy chromatic number for splitting graph of
cycle graph Cn is given by

Γ[S(Cn)] =

{
n− 1, n = 4

4, n ̸= 4

Proof. Consider a cycle graph Cn with vertex set V (Cn) = {Vi : i ∈ [1, n]} and
edge set E(Cn) = {ViVi+1 : i ∈ [1, n)}∪{V1Vn} where | V (Cn) |=| E(Cn) |= n.
Moreover, △(Cn) = δ(Cn) = d(Vi) = 2 ∀ i ∈ [1, n].
By the construction of splitting graph, we have V [S(Cn)] = {Vi : i ∈ [1, n]} ∪
{V ′

i : i ∈ [1, n]} and E[S(Cn)] = {ViVi+1 : i ∈ [1, n)} ∪ {V1Vn} ∪ {V ′
i Vi+1 : i ∈

[1, n)}∪{V ′
1Vn}∪{V1V

′
n}∪{V ′

i Vi−1 : i ∈ (1, n]} along with △[S(Cn)] = d(Vi) =
4 and δ[S(Cn)] = d(V

′
i ) = 2 ∀ 1 ≤ i ≤ n. Consider the colors C1, C2, C3, ...

and assign the colors as follows.

Case 1. When n = 4
Define a mapping α : V [S(Cn)] → {Ck : 1 ≤ k ≤ 3} as follows:

• For 1 ≤ i ≤ n
2
, α(V2i) = C2 and α(V2i−1) = C3

• α(V
′
i ) = C1 ∀ 1 ≤ i ≤ n

Obviously, Γ[S(Cn)] = 3. Suppose Γ[S(Cn)] > 3, it leads to contradiction
of grundy coloring and if Γ[S(Cn)] < 3, it leads to contradiction of proper
coloring.

Case 2. When n ̸= 4
Define a mapping β : V [S(Cn)] → {Ck : 1 ≤ k ≤ 4} such that

• For i ∈ [1, n], β(V
′
i ) = C1

• For n ≡ 0 mod 3, β(Vi) =


C4, i ≡ 1 mod 3

C3, i ≡ 2 mod 3

C2, i ≡ 0 mod 3

• For n ≡ 1 mod 3, β(Vi) =


C4, i ≡ 1 mod 3

C3, i ≡ 2 mod 3 & i=n-3,n-1

C2, i ≡ 0 mod 3 & i=n-2,n

• For n ≡ 2 mod 3, β(Vi) =


C4, i ≡ 1 mod 3

C3, i ≡ 2 mod 3 & i=n-1

C2, i ≡ 0 mod 3 & i=n
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∴ Γ[S(Cn)] = 4 for n ̸= 4. Suppose Γ[S(Cn)] > 4, it contradicts the definition
of grundy coloring. For instance, Γ[S(Cn)] = 5, the vertex V1 colored with C5

is not adjacent with C2 for the mapping β(Vi) =


C5, i = 1

C4, i ≡ 0 mod 2

C3, i ≡ 1 mod 2

which

is a contradiction. And suppose Γ[S(Cn)] < 4, eventhough it satisfies it is not
maximum.

Thus from the above cases, Γ[S(Cn)] =

{
n− 1, n = 4

4, n ̸= 4

Theorem 3.2. For n ≥ 2, the grundy chromatic number for splitting graph of
path graph Pn is given by

Γ[S(Pn)] =

{
3, n = 2, 3

4, n ≥ 4

Proof. Consider a path graph Pn with V (Pn) = {Vi : i ∈ [1, n]} and
E(Pn) = {ViVi+1 : i ∈ [1, n)} where | V (Pn) |= n & | E(Pn) |= n − 1.
Moreover, △(Pn) = 2 & δ(Pn) = 1.
By the construction of splitting graph, we have V [S(Pn)] = {Vi : i ∈ [1, n]} ∪
{V ′

i : i ∈ [1, n]} and E[S(Pn)] = {ViVi+1 : i ∈ [1, n)} ∪ {V ′
i Vi+1 : i ∈

[1, n)} ∪ {ViV
′
i+1 : i ∈ [1, n)} along with δ[S(Pn)] = d(V

′
1 ) = d(V

′
n) = 1 and

△[S(Pn)] =

{
2, n = 2

4, n ̸= 2

Consider the colors C1, C2, C3, ... and assign them as follows.

Case 1. When n = 2, 3
Define a mapping ϕ : V [S(Pn)] → {Ck : 1 ≤ k ≤ 3} as follows:

• ϕ(V⌊n
2 ⌋) = C3

• ϕ(V⌊n
2 ⌋+1) = C2

• ϕ(V
′
i ) = C1 ∀ 1 ≤ i ≤ n

and the remaining vertices are greedily colored. Obviously, Γ[S(Pn)] = 3 for
n = 2, 3.

Case 2. When n ≥ 4
Define a mapping ψ : V [S(Pn)] → {Ck : 1 ≤ k ≤ 4} as follows:

• For 1 ≤ i ≤ n, ψ(V
′
i ) = C1
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• For i = 2, ψ(Vi) = C4, ψ(Vi+1) = C3, ψ(Vi−1) = ψ(Vi+2) = C2

and the remaining vertices are greedily colored.
∴ Γ[S(Pn)] = 4 for n ≥ 4. Suppose Γ[S(Pn)] > 4, it leads to contradiction
of grundy coloring. For instance, Γ[S(Pn)] = 5, the vertices V

′
3 & V

′
4 colored

with C2 is not adjacent with C1 for the mapping ψ(V3) = C5, ψ(V4) = C4,
ψ(V2) = ψ(V5) = C3 & ψ(V1) = C2 and the remaining vertices V

′
i & V

′
i+1 are

colored by C1 and C2 ∀ odd ’i’ such that ψ(V
′
i ) = ψ(V

′
i+1) and then the remain-

ing Vi vertices are greedily colored. And suppose Γ[S(Pn)] < 4, eventhough it
satisfies it is not maximum.

Thus from the above cases, Γ[S(Pn)] =

{
3, n = 2, 3

4, n ≥ 4

Theorem 3.3. For n ≥ 3, the grundy chromatic number for splitting graph of
pan graph (n− pan) is given by

Γ[S(n− pan)] = 4

Proof. Consider a pan graph with vertex set V (n − pan) = {Vi : 0 ≤ i ≤
n} and edge set E(n − pan) = {ViVi+1 : 0 ≤ i ≤ n − 1} ∪ {V1Vn} where
| V (n− pan) |=| E(n− pan) |= n+1. Moreover, △(n− pan) = d(V1) = 3 and
δ(n− pan) = d(V0) = 1.
By the construction of splitting graph, we have V [S(n − pan)] = {Vi : 0 ≤
i ≤ n} ∪ {V ′

i : 0 ≤ i ≤ n} and E[S(n − pan)] = {V1Vn} ∪ {ViVi+1 : 0 ≤ i ≤
n − 1} ∪ {V ′

i Vi+1 : 0 ≤ i ≤ n − 1} ∪ {V ′
i Vi−1 : 1 ≤ i ≤ n} ∪ {V1V

′
n} ∪ {V ′

1Vn}
along with δ[S(n− pan)] = d(V

′
0 ) = 1 and △[S(n− pan)] = d(V1) = 6.

Define a mapping λ : V [S(n− pan)] → {Ck : 1 ≤ k ≤ 4} and assign the colors
as follows.

• λ(V1) = C4

• For 2 ≤ i ≤ n, λ(Vi) =

{
C3, i ≡ 0 mod 2

C2, i ≡ 1 mod 2

• λ(V0) = C2

• λ(V
′
i ) = C1 ∀ 0 ≤ i ≤ n

∴ Γ[S(n− pan)] = 4. Suppose Γ[S(n− pan)] > 4, it leads to contradiction of
grundy coloring. For instance, Γ[S(n−pan)] = 5, the vertices {Vi : 2 ≤ i ≤ n}
colored with C4 & C3 are not adjacent with C2 for the mapping λ(V1) = C5 &

λ(Vi) =

{
C4, i ≡ 0 mod 2

C3, i ≡ 1 mod 2
∀ 2 ≤ i ≤ n which contradicts grundy coloring.
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And suppose Γ[S(n−pan)] < 4, it contradicts the definition of proper coloring.
Thus, Γ[S(n− pan)] = 4 for n ≥ 3.

Theorem 3.4. For n ≥ 1, the grundy chromatic number for splitting graph of
fan graph F1,n is given by

Γ[S(F1,n)] =


3, n = 1

4, n = 2, 3

5, n ≥ 4

Proof. Consider a fan graph F1,n with vertex set V (F1,n) = {Vi : 0 ≤ i ≤ n}
and edge set E(F1,n) = {V0Vi : 1 ≤ i ≤ n} ∪ {ViVi+1 : 1 ≤ i ≤ n − 1} where
| V (F1,n) |= n + 1 & | E(F1,n) |= 2n − 1. Moreover, △(F1,n) = d(V0) = n &
δ(F1,n) = d(V1) = d(Vn) = 2.
By the construction of splitting graph, we have V [S(F1,n)] = {Vi : 0 ≤ i ≤
n} ∪ {V ′

i : 0 ≤ i ≤ n} and E[S(F1,n)] = {V0V1} ∪ {V0V
′
1} ∪ {V ′

0V1} for n = 1
otherwise E[S(F1,n)] = {V0Vi : 1 ≤ i ≤ n} ∪ {ViVi+1 : 1 ≤ i ≤ n− 1} ∪ {V ′

0Vi :
1 ≤ i ≤ n} ∪ {V ′

i Vi+1 : 1 ≤ i ≤ n − 1} ∪ {V ′
nV0} ∪ {ViV

′
i+1 : 0 ≤ i ≤

n − 1} ∪ {V0V
′
i : 2 ≤ i ≤ n − 1} along with △[S(F1,n)] = d(V0) = 2n and

δ[S(F1,n)] =

{
1, n = 1

2, n ̸= 1

Consider the colors C1, C2, C3, ... and assign the colors as follows.

Case 1. When n = 1
Define a mapping µ : V [S(F1,n)] → {Ck : 1 ≤ k ≤ 3} and assign the colors as
follows:

• µ(V0) = C3

• µ(V1) = C2

• µ(V
′
i ) = C1 ∀ i = 0, 1

Obviously, Γ[S(F1,n)] = 3 for n = 1.

Case 2. When n = 2, 3
Consider a mapping ρ : V [S(F1,n)] → {Ck : 1 ≤ k ≤ 4} and assign the colors
as follows:

• ρ(V0) = C4

• ρ(V⌊n
2 ⌋) = C3

• ρ(V⌊n
2 ⌋+1) = C2
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• ρ(V
′
i ) = C1 ∀ 0 ≤ i ≤ n

and the remaining vertices are colored greedily. Thus, Γ[S(F1,n)] = 4 for
n = 2, 3.

Case 3. When n ≥ 4
Define a mapping ω : V [S(F1,n)] → {Ck : 1 ≤ k ≤ 5} and assign the colors as
follows:

• ω(V0) = C5

• For i = 2, ω(Vi) = C4, ω(Vi+1) = C3, ω(Vi−1) = ω(Vi+2) = C2

• ω(V
′
i ) = C1 ∀ 0 ≤ i ≤ n

and the remaining vertices are colored greedily.
∴ Γ[S(F1,n)] = 5 for n ≥ 4. Suppose Γ[S(F1,n)] > 5, it leads to contradic-
tion of grundy coloring. For instance, Γ[S(F1,n)] = 6, the vertices colored with
{Ck : 3 ≤ k ≤ 5} is not adjacent with C2 for the mapping ω(V0) = C6,
ω(V

′
i ) = C1 ∀ 0 ≤ i ≤ n and for i = 3, ω(Vi) = C5, ω(Vi−1) = C4,

ω(Vi+1) = ω(Vi−2) = C3, ω(Vi+2) = C2and then the remaining are greedily
colored. Similarly, 7 ≤ Γ[S(F1,n)] ≤ 2n + 1 arrives at contradiction. And
suppose Γ[S(F1,n)] < 5, eventhough it satisfies it is not maximum.

Hence, from the above cases, Γ[S(F1,n)] =


3, n = 1

4, n = 2, 3

5, n ≥ 4

Theorem 3.5. For n ≥ 1, the grundy chromatic number for splitting graph of
double fan graph F2,n is given by

Γ[S(F2,n)] =


3, n = 1

4, n = 2, 3

5, n ≥ 4

Proof. Consider a double fan graph F2,n with vertex set V (F2,n) = {Vi : 1 ≤
i ≤ n} ∪ {u1, u2} and edge set E(F2,n) = {V1u1} ∪ {V1u2} for n = 1 other-
wise E(F2,n) = {ViVi+1 : 1 ≤ i ≤ n − 1} ∪ {u1Vi : 1 ≤ i ≤ n} ∪ {u2Vi :
1 ≤ i ≤ n} where | V (F2,n) |= n + 2 & | E(F2,n) |= 3n − 1. Moreover,

△(F2,n) =

{
n+ 1, 1 ≤ n ≤ 3

n, n ≥ 4
and δ(F2,n) =

{
n, n = 1, 2

3, n ≥ 3

By the construction of splitting graph, we have V [S(F2,n)] = {Vi : 1 ≤ i ≤
n} ∪ {u1, u2} ∪ {V ′

i : 1 ≤ i ≤ n} ∪ {u′
1, u

′
2} and E(F2,n) = {V1u1} ∪ {V1u2} ∪

{V ′
1u1} ∪ {V ′

1u2} ∪ {V1u
′
1} ∪ {V1u

′
2} for n = 1 otherwise E[S(F2,n)] = {u1Vi :
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1 ≤ i ≤ n} ∪ {u2Vi : 1 ≤ i ≤ n} ∪ {ViVi+1 : 1 ≤ i ≤ n − 1} ∪ {u′
1Vi : 1 ≤

i ≤ n − 1} ∪ {u′
2Vi : 1 ≤ i ≤ n − 1} ∪ {V ′

i u1 : 1 ≤ i ≤ n} ∪ {V ′
i u2 : 1 ≤

i ≤ n} ∪ {V ′
i Vi+1 : 1 ≤ i ≤ n − 1} ∪ {ViV

′
i+1 : 1 ≤ i ≤ n − 1} along with

△[S(F2,n)] =

{
2(n+ 1), 1 ≤ n ≤ 3

2n, n ≥ 4
and δ[S(F2,n)] =

{
n, n = 1, 2

3, n ≥ 3

Consider the colors C1, C2, C3, ... and assign the colors as follows.

Case 1. When n = 1
Define a mapping ξ : V [S(F2,n)] → {Ck : 1 ≤ k ≤ 3} and assign the colors as
follows:

• ξ(uj) = C3 ∀ 1 ≤ j ≤ 2

• ξ(V1) = C2

• ξ(V
′
i ) = ξ(u

′
j) = C1 ∀ i = 1 & 1 ≤ j ≤ 2

Obviously, Γ[S(F2,n)] = 3 for n = 1.

Case 2. When n = 2, 3
Define a mapping π : V [S(F2,n)] → {Ck : 1 ≤ k ≤ 4} as follows:

• π(uj) = C4 ∀ 1 ≤ j ≤ 2

• π(V⌊n
2 ⌋) = C3

• π(V⌊n
2 ⌋+1) = C2

• π(V
′
i ) = π(u

′
j) = C1 ∀ 1 ≤ i ≤ n & 1 ≤ j ≤ 2

and the remaining vertices are colored greedily. Thus, Γ[S(F2,n)] = 4 for
n = 2, 3.

Case 3. When n ≥ 4
Define a mapping σ : V [S(F2,n)] → {Ck : 1 ≤ k ≤ 5} and assign the colors as
follows:

• σ(uj) = C5 ∀ 1 ≤ j ≤ 2

• For i = 2, σ(Vi) = C4, σ(Vi+1) = C3, σ(Vi−1) = σ(Vi+2) = C2

• σ(V
′
i ) = σ(u

′
j) = C1 ∀ 1 ≤ i ≤ n & 1 ≤ j ≤ 2

and the remaining vertices are colored greedily.
∴ Γ[S(F2,n)] = 5 for n ≥ 4. Suppose Γ[S(F2,n)] > 5, it leads to contradiction
of grundy coloring. For instance, Γ[S(F2,n)] = 6, the vertices {V ′

i : 2 ≤ i ≤
n − 1} colored with C2 is not adjacent with C1 for the mapping σ(uj) = C6
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∀ 1 ≤ j ≤ 2, σ(V2) = C5, σ(V
′
i ) = C2 ∀ 2 ≤ i ≤ n− 1, σ(u

′
j) = σ(V

′
i ) = C1 ∀

i = 1, n & 1 ≤ j ≤ 2 and then the remaining are colored by C3 & C4 simulta-
neously which contradicts grundy coloring. Similarly 7 ≤ Γ[S(F2,n)] ≤ 2n + 1
leads to contradiction. And suppose Γ[S(F2,n)] < 5, eventhough it satisfies it
is not maximum.

Hence, from the above cases, Γ[S(F2,n)] =


3, n = 1

4, n = 2, 3

5, n ≥ 4

4 Conclusion

Atlast, we derived the exact grundy chromatic number for splitting graph on
cycle graph, path graph, pan graph, fan graph and double fan graph.

5 Open Problem

However, the above results can be the foundation step to develop the general
bound to find grundy chromatic number of splitting graph of any graph G,
which is still an open problem.
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