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Abstract

In the present paper, we discuss the application of the Laplace decomposition
method (LDM) to find approximate solutions for some classes of time and
space-conformable fractional evolution equations. Some illustrative examples
are presented showing that the LDM s an efficient method for finding solutions
of nonlinear conformable fractional problems.
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1 Introduction

Some applications in sciences are modeled by nonlinear fractional differential
equations and it is very difficult to find solutions to these equations. For this
reason, there are several methods that can be applied to find approximate so-
lutions [5, 6, 10, 11, 28]. In particular, one of these methods, is the Laplace
decomposition method (LDM), for more information and also for some appli-
cations, we cite the research papers [7, 8, 13, 14, 29, 31, 34]. The principle of
the LDM method is in combining the Laplace transform method [12, 21, 23]
and the Adomian decomposition method [2, 4, 22, 26].

In this paper, we apply the LDM method to solve some nonlinear conformable
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fractional differential equations of the form:
TP (w,1) + aTou (@,8) + bu (@,6) + g (u(@,) = h(a,t), (L)
with the initial conditions

u(z,0) = fi(z), u(x,0)=fo(x), (1.2)

where TP, T are the conformable fractional derivatives in the sense of Khalil
[18], with 1 < «, 8 < 2, a,b are constants, h (x,t) is the inhomogeneous part,
g (u(x,t)) is a nonlinear function of u (z,t) and f; (x), fa (x) are a given func-
tions.

The paper is organized as follows: In the second section, some preliminar-
ies related to conformable fractional derivative approach are recalled. In the
third section, the Laplace decomposition method is discussed for solving some
important conformable fractional evolution equations. In the fourth section,
numerical examples are presented. Finally, some graphs of the obtained solu-
tions are plotted, and a conclusion follows.

2 Conformable Fractional Concepts

In this section, we introduce some definitions and properties, see [1, 3, 9, 18,
20, 25, 32].

Definition 2.1 Let f:(0,00) — R. The conformable fractional derivative of
order « is defined by

(T“f)(t):m:hm(w>, t>0, 0<a<l  (21)

ot e—0 €

Definition 2.2 The conformable fractional integral of a function f : (0,00) —
R of order « is defined as

t

(I*f)(t) = {T“ilf (1) dr, 0<a<l. (2.2)

In this paper, we need to recall the properties:
1°Tef () = £ () - £ (0) (2.3)

and

(T2f) (1) = o4, (2.4)
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Definition 2.3 Let f:(0,00) — R be a real valued function and 0 < a < 1.
Then the conformable fractional Laplace transform of f is defined as:

z%

Lo [f (2)] (5) =a (5) = fe-s(f) [ (2) dor = ?e% D f (@) tdr (2.5)

The Laplace transform for the conformable fractional-order derivative is
described as follows:

Lo (T*f (x)) = sLa [f ()] — [ (0) (2.6)

The relation between the usual and the fractional Laplace transforms is
given below.

Theorem 2.4 [1/Let f:(0,00) = R be a real valued function such
that Lo [f ()] (s) =4 (s) exists. Then:

o (5) = L|f ((an)*)] (9),
where L{g (x)] (s) = C]:e_s’ff (x)dx

It is easy to show that:
Theorem 2.5 If L, [f (z)] (s) =a () ewxists. Then:

, ¢ and p are arbitrary constants.

3 Main Steps of LDM Method

In this section, we present the Laplace Decomposition methods in the case of
Khalil fractional theory. For more details on the two methods, one can consult
[15, 16, 19, 27, 30].

Firstly, Laplace transform is applied on both sides of the equation (1.1). Then,
we get

Ly [T (,6)] + Ly [T (@, 0] + bL [u (0] + Ly [g (u (2,2))] = Ly [h (2, )],
(3.1)
hence,

sPu(x,s) — Pt (x,0) — s572u; (,0) = Lg [h (z,t)] — aLg [Tu (x,t)]

—bLﬁ [U (ZE, t)] - L,B [g (u (l‘?t))] )
(3.2)
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equ. (3.2) can be written as

u(x,s) = %u (x,0) + S%Ut (x,0) + S%L/g [h(2,t)] = HLg[T5u(x,t)] 53
b Ly fu (1)) — &L [g (u 1)) |

Now, we use the fact that the Adomian decomposition method assumes that
the function wu (z,t) can be decomposed into an infinite series

u(z,t) = > u, (z,t) (3.4)
n=0
It also assumes that
g (u(z,t) = Z_IOAn, (3.5)

where A, are Adomian polynomials given by

’ =0 A=0

where A is a parameter.
So, we have

Ag = &% g (ZONU1> =g (Uo)

A = %% g (XE)/\ZUZ) = w19 (ug)

A= o (Sxu )| =5 )’ ) + e’ (w0

Substitution Equation (3.4), Equation (3.5) and Equation (3.6) in Equation
(3.3), we have

S (000) = 1 (o) 4 Bfao) 4 Lo o)) = s |72 S or0) )]

_S%Lﬁ |: _Oun (.Z‘,t):| - S%Lﬂ |:20An:| )

(3.7)
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Hence,
up (2,8) = L () + 5 fo (@) + 5Lg [h (2, 8)] = f3(x,5)

s (2,8) = — & L (T2 (g (2,))] — 5 Ly [uo (,6)] — L [Ao]

(3.8)
Ut (2,8) = =& L [T (un (2, )] — 5L [un (2,8)] — £ L5 [4,]
When the inverse Laplace transform Equation (3.8) is applied, we get
ug (z,t) = f3(z,1)
(3.9)
Upi1 (2,1) = =L [ S Lg (aT2* (uy (2,1)) + buy, (z,1) + A,)]
4 Nonlinear Applications
As application, we begin by the following nonlinear example:
4.1 Example 1
We consider the nonlinear fractional equation
TPu(z,t) — Tou (x,t) = M7 (z,t), 1<a,f<2. (4.1)
with the initial conditions:
u(z,0)=g1(z), u(x,0)=gs(x). (4.2)

We have
u(z,s) = tu(z,0) + Su (2,0) + HLg [Tou (x,8)] + S Ls [u (z,8)]  (4.3)
By using the initial condition, the following recurrence relational is obtained
u(z,s) =22 4 2@ o Lp(Toy (2,8) + M (2, 1)) (4.4)
Applying the inverse Laplace transform, to both sides of Equation (4.4) yields:
u(z,t) =g1(x) +tge (z) + Lgl [Tou (x,t) + Au? (z,t)] (4.5)

Case 1: For v =1
We have

ﬁoun (2,) = g1 (z) + tga (z) + +L;' L%LB { ﬁngun (2,0) + Ay (2, t)H

n=0
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Hence,
up (z,t) = g1 (x) + tga (x)
Upt1 (z,1) = Lgl [S%ng {ZTfun (2, t) + XD uy, (z, t)” (4.6)
n=0 n=0
Consequently
uy (2,t) = Lg' [F5Ls (T2ug (x,) + Mg (2,1))] = (Mg (2) + T (91 (x))) F(éi—l)
tB+1

+(Ag2 () + T (92 () 5573

ug (x,t) = Lgl [S%BLB (Touy (x,t) + Aug (z, t))}
o ( ((gr (@) + T2 (91 (2))) 7 ) )
s, |\ TR+ T @ @) i
I ( (g1 () + T2 (91 (2))) 7y )
+(Ag2 () + T7 (02 (2))) g
= [2AT2 (g1 (2)) + T2 (g1 (2)) + A1 (7)) prirrrs

t2ﬂ+1

+[2AT3 (92 (%)) + T3 (92 () + N2 (2)] map7ay

For A\=1,¢; () =1+sinz, g» (r) = 0 and a = 2, we obtain
up (z,t) =1+ sinx

tB

ur (2,1) = w77y

— "
Un (2,1) = 55T
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Thus,

2
u(z,t) =1+sinz + (5+1) + (2'5/3“) + ...+ (n5+1) + .. (4.7)

To find the validity of the approximated solution, when § = 2, the exact
solution is:

t2n

u(x,t) =sinz+1+ r(3) + (5) + o F oo T = sina +cosht. (4.8)

Figure 1.1 is a graph of the solution (4.7), respectively for 5 equal to 1.25, 1.5, 1.75,
and 2.

1tbpF'2.2381in1.6639in0in Figure itbpF'2.2381in1.6639in0inFigure

(a) (b)
1tbpF2.207in1.6405in0inFigure  1tbpF2.175in1.6172in0inFigure

() (d)

Figl.1 Graph of Eq.(4.7) with different 5 values
(a) B=1.25, (b) B=15, (c) B=175, (d) B=2,

Case 2: For v # 1

We have

Zjoun (z,t) = g1 (x) + tga (x) + Lg' L%LB {gngun (z,t) + AfjAn”

n=0
(4.9)
The few components of Adomian polynomials are given by
AO = 'U/g
A1 = ’yulugfl
A2 = ’)/U/Qu’y 1 + 'Y('Y 1)U Uo -2 (410)
Az = yugul~ Ly (7 — 1) wyugug™ 2 4 —7(7 X )u?ug_g
Therefore,
uo (,1) = g1 (z) + tga ()
(4.11)

i (1) = L' L—BLﬁ {inun (,6) + A T;ioA"H
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Consequently

= L/gl [S%LB (T;}UO (l’, t) -+ )\AQ)]
= L;l [ Ls (T + Aug)]

= L_l [ L Lﬁ (T“ul ($ t) , +>\A1)]
rh [%LB (To‘ul + Mugud )]

ug (z,t) = L[;l [S%Lg (Tugy (x,t) + )\Ag)]
= Lg' [S%Lﬁ (T;‘UQ + Myugul t + 20 l)uluo )}

For A = 1,7 =2, () = 22, g» (z) = 0, we obtain

ug (z,t) =

uy (z,t) = L [ L L (TSug (z, 1) + Ag)]

= L [ Ly (Toug (o, 0) +3)] = Ly [ L (207 + 2]

= (2:32*& + 2 F(é—il)

us (z,t) = Lgl [S%LB (Tuy (x,t) + A1)} (412
= L;" Lo ((2(2— ) (1 - )22 + 1604 + 22) iy ) |

= (2(2—a) (1 —a)2? 2+ 162'° + 22°) o5

Thus,
Ca 8
u(x,t) = xz —12- (2x2 4—l— x4) F(é+1) " (4.13)
+(22-a)(l —a)a” + 162" + 22°) 557y + -

Figure 1.2 is a graph of the solution (4.13), for a, 8 equal to 1.25,1.5,1.75, and
2.

1tbpF2.29in1.702in0inFigure  itbpF'2.3004en1.7097in0in Figure

(a) ()
1tbpF'2.2174in1.6483in0in Figure 1tbpF'2.2174in1.6483in0inFigure
(¢) (d)

Figl.2 Graph of Eq.(4.13) with different «, 8 values
(@) a=p=125 (b) a=pF=15, (¢) a=p=175, (d) a=p=2,
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4.2 Example 2

We consider the nonlinear fractional equation
TPu(x,t) — Tou (x,t) = u(z, t) + v (z,t), 1<a,f<2 (4.14)
with the initial conditions:
u(z,0) =142z, u(x,0)=0. (4.15)

When the Laplace transform is applied to both sides of Equation (4.14), we
can write

U({L‘,S) _%U(I,O)—f-s%ut (ZE,O)—’—S%Lﬁ [Tmau(xat)] (4 16)
+oLs[W? (2,1)] 5 Lg [u (@, 1)) '
Hence,
2
1
u(z,s) = - —Ls (Tou(z,t) +u’ (z,5) + u(z,s)) (4.17)
s s
Applying the inverse Laplace transform, to both sides of Equation (4.17) yields:
2 |1 a 2
u(z,t)=a"+ Ly [—ﬁLB (Tou(z,t) +u’ (z,t) +u (I,t)):| (4.18)
s
Hence,

Sty (3,8) = 2% + L [S%Lﬂ [iTgun (@) + > By + un (:c,t)” (4.19)

n=0 n=0 n=0

On the other hand, we have

B() = U(2)

B1 = 2u0u1

By = 2ugugy + u?

Bs = 2ugus + 2uqus

Then

Ug (.Z‘,t) =1 +x27

Unt1 (2,t) = L' {S%Lg [fj:raun (@, 8)+ > By + un (2. t)H (4.20)

n=0 n=0

Consequently

,t) [85L5 T U() X t) +Bo+U0 (II? t))]
[ Lﬁ (T ’LL0+U0+’LL0):|
Lg (2227 4+ 2 4+ 2 4 32?)]

[ )

= (2227 + 2t + 322 + 2) NEE]

I 5
»—A"{bl)—- ||

Ly
Ly
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us (z,t) = LE [ 7 Lg (TS (z,t) + By + wy (:L‘,t))}
= Lgl [ Lg (T Uy + 2UOU1 + ul)]

To ((29;2 ® 4ot + 302 +2) (6+1)>
+ (2227 + 24 4 322 4 2) ([t?il)

1|1, T ((2x2 * 42t + 327 4 2) (5“))
oo + (6227 + 420 + 225 + 92t + 1307 + 6) i

= (2(2 - a) 2?7 + 8t + 1207 + 22 + 92! + 132 + 6)

28
r(28+1)

Thus,

2—a
w(z,t) =142+ (222> +2* + 327+ 2) ¢ (B+1)
+(2(2— ) 2?72 + 8217 + 12277 + 22° + 92" + 132% + 6) 15577
(4.21)
Figure 1.3 is a graph of the solution (4.21), for «, 8 equal to 1.25,1.5,1.75, and
2.

1tbpF'2.3627in1.7582in0in Figure  itbpF'2.373in1.7651in0in Figure
(a) (b)
1tbpF'2.4146in1.7953in0in Figure itbpF'2.4362in1.8118in0inFigure
(¢) (d)
Figl.3 Graph of Eq.(4.21) with different «, 8 values
(a) a=p=125 (b) a=pF=15, (¢) a=p=175, (d) a=/=2,

4.3 Example 3

Consider the nonlinear fractional wave equation [16, 17]

Tou(x,t) + aTfu (2, t) 4+ bu (¢, x) + cu® (t,2) =0,
(4.22)
O<a<1,t>0 1<a,B<2

with the initial conditions:

u(z,0)=hy(z), u(x,0)=hs(z). (4.23)
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where a, b, ¢ are constants.
We have

wo (,8) = hy (2) + X hs (2)
s (2,1) = — L3 [S%Lﬁ [aijTgun (@, 6) 453 un (2,8) + €3 an

n=0 n=0 n=0
(4.24)
where C), are given by

00 3
Cn = Wi [(ZM) ] n=0,1,2,.. (4.25)

A=0
Hence,
0 [ [ > X 3]
Co=g3s5 (zym,) = (up)®
| =0 da=0
1 S 3
Cl - %ddT (Z)\ZUZ) = 3U1 (U0)2
i=0
N 1 A=0
Cy = %% (Z)‘iul) =3 (Ul)2 (uo) + uz (U0)2
| \=0 47 A=0
G e | (Sxu) | =m0 6 ) () () + ()’
| \i=0 1o

For « = 2,hy (x) = x and hy(x) = 0, we obtain the following recurrence
relations,

uo (z,t) = x
Upt1 (T,1) =

—L5" [ L L [aT 0 Ungs (2, 8) + bty (2, 1) + cCh]]

Consequently

Ug (IL‘, t) =,

uy (z,t) = —Lg' [%%LB [auoes (2, 1) + bug (2, 1) + ¢ (uo)*]]

= — (bl’ + Cl’g) m ,
up (2,t) = —Lg" [ &5 L [atiree (2, 1) + buy (x,) 4 3cuy (ug)] ]
= —L;' [5Ls [~6acz — b (bx + ca®) — 3¢ (bx + ca®) (x)°]]

28
[(6ac + %) 2 + dbea® + 3c2°] 7557

uz (2,t) = —Lg" [5Ls [atses (2,) + bus (z,t) + 3¢ (ur)? (uo) + 3cus (ug)?]]
Thus,

u(z,t) =z — (br + ca®) =2
) (4.26)

+ ((6(10 + b2) T + 4bCl'3 + 362.175) m =+ ...
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Figure 1.4 is a graph of the solution (4.21), for a = b = ¢ =1 and «, § equal
to 1.25,1.5,1.75, and 2.

1tbpF'2.6126in1.9424in0in Figure itbpF'2.6022in1.9346in0in Figure

(a) (b)
1tbpF'2.4984in1.8568in0in Figure 1tbpl'2.4984in1.8576in0inFigure

(¢) (d)
Figl.4 Graph of Eq.(4.26) with different «, 8 values

(a) a=p=125 (b)) a=p0=15, (¢) a=p=175 (d) a=p5=2,

5!

Conclusion and Open Problem

The LDM method is applied for some nonlinear conformable fractional differ-
ential problems. It is shown that this method is a powerful device to solve not
only linear problems but it is also valid for nonlinear ones.

At the end of this paper, we shall propose the following open question:

We think it is important to address a comparative study with other numerical
methods for the above general conformable fractional evolution problem.
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