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Abstract

In the present paper, we discuss the application of the Laplace decomposition
method (LDM) to find approximate solutions for some classes of time and
space-conformable fractional evolution equations. Some illustrative examples
are presented showing that the LDM is an efficient method for finding solutions
of nonlinear conformable fractional problems.
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1 Introduction

Some applications in sciences are modeled by nonlinear fractional differential
equations and it is very difficult to find solutions to these equations. For this
reason, there are several methods that can be applied to find approximate so-
lutions [5, 6, 10, 11, 28]. In particular, one of these methods, is the Laplace
decomposition method (LDM), for more information and also for some appli-
cations, we cite the research papers [7, 8, 13, 14, 29, 31, 34]. The principle of
the LDM method is in combining the Laplace transform method [12, 21, 23]
and the Adomian decomposition method [2, 4, 22, 26].
In this paper, we apply the LDM method to solve some nonlinear conformable
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fractional differential equations of the form:

T β
t u (x, t) + aTα

x u (x, t) + bu (x, t) + g (u (x, t)) = h (x, t) , (1.1)

with the initial conditions

u (x, 0) = f1 (x) , ut (x, 0) = f2 (x) , (1.2)

where T β
x , T

α
t are the conformable fractional derivatives in the sense of Khalil

[18], with 1 < α, β ≤ 2, a, b are constants, h (x, t) is the inhomogeneous part,
g (u (x, t)) is a nonlinear function of u (x, t) and f1 (x) , f2 (x) are a given func-
tions.
The paper is organized as follows: In the second section, some preliminar-
ies related to conformable fractional derivative approach are recalled. In the
third section, the Laplace decomposition method is discussed for solving some
important conformable fractional evolution equations. In the fourth section,
numerical examples are presented. Finally, some graphs of the obtained solu-
tions are plotted, and a conclusion follows.

2 Conformable Fractional Concepts

In this section, we introduce some definitions and properties, see [1, 3, 9, 18,
20, 25, 32].

Definition 2.1 Let f : (0,∞) → R. The conformable fractional derivative of
order α is defined by

(Tαf) (t) = ∂αf(t,x)
∂tα

= lim
ε→0

(
f(t+εt1−α)−f(t)

ε

)
, t > 0, 0 < α ≤ 1. (2.1)

Definition 2.2 The conformable fractional integral of a function f : (0,∞) →
R of order α is defined as

(Iαf) (t) =
t∫
0

τα−1f (τ) dτ, 0 < α ≤ 1. (2.2)

In this paper, we need to recall the properties:

IαTαf (t) = f (t)− f (0) (2.3)

and

(Tαf) (t) = t1−α df(t)
dt

. (2.4)
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Definition 2.3 Let f : (0,∞) → R be a real valued function and 0 < α ≤ 1.
Then the conformable fractional Laplace transform of f is defined as:

Lα [f (x)] (s) =α (s) =
∞∫
0

e−s(xα

α )f (x) dαx =
∞∫
0

e−s(xα

α )f (x)xα−1dx (2.5)

The Laplace transform for the conformable fractional-order derivative is
described as follows:

Lα (T
αf (x)) = sLα [f (x)]− f (0) (2.6)

The relation between the usual and the fractional Laplace transforms is
given below.

Theorem 2.4 [1]Let f : (0,∞) → R be a real valued function such
that Lα [f (x)] (s) =α (s) exists. Then:

α (s) = L
[
f
(
(αx)

1
α

)]
(s) ,

where L [g (x)] (s) =
∞∫
0

e−stf (x) dx

It is easy to show that:

Theorem 2.5 If Lα [f (x)] (s) =α (s) exists. Then:

Lα [c] (s) =
c
s

Lα [x
p] (s) = α

p
α
Γ(1+ p

α)
s1+

p
α

, c and p are arbitrary constants.

3 Main Steps of LDM Method

In this section, we present the Laplace Decomposition methods in the case of
Khalil fractional theory. For more details on the two methods, one can consult
[15, 16, 19, 27, 30].
Firstly, Laplace transform is applied on both sides of the equation (1.1). Then,
we get

Lβ

[
T β
t u (x, t)

]
+ aLβ [T

α
x u (x, t)] + bLβ [u (x, t)] + Lβ [g (u (x, t))] = Lβ [h (x, t)] ,

(3.1)
hence,

sβu (x, s)− sβ−1u (x, 0)− sβ−2ut (x, 0) = Lβ [h (x, t)]− aLβ [T
α
x u (x, t)]

−bLβ [u (x, t)]− Lβ [g (u (x, t))] ,
(3.2)
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equ. (3.2) can be written as

u (x, s) = 1
s
u (x, 0) + 1

s2
ut (x, 0) +

1
sβ
Lβ [h (x, t)]− a

sβ
Lβ [T

α
x u (x, t)]

− b
sβ
Lβ [u (x, t)]− 1

sβ
Lβ [g (u (x, t))] ,

(3.3)

Now, we use the fact that the Adomian decomposition method assumes that
the function u (x, t) can be decomposed into an infinite series

u (x, t) =
∞∑
n=0

un (x, t) (3.4)

It also assumes that

g (u (x, t)) =
∞∑
n=0

An, (3.5)

where An are Adomian polynomials given by

An = 1
n!

dn

dλn

[
g

(
∞∑
i=0

λiui

)]
λ=0

, n = 0, 1, 2, ... (3.6)

where λ is a parameter.

So, we have

A0 =
1
0!

d0

dλ0

[
g

(
∞∑
i=0

λiui

)]
λ=0

= g (u0)

A1 =
1
1!

d1

dλ1

[
g

(
∞∑
i=0

λiui

)]
λ=0

= u1g
′
(u0)

A2 =
1
2!

d2

dλ2

[
g

(
∞∑
i=0

λiui

)]
λ=0

= 1
2!
(u1)

2 g
′′
(u0) + u2g

′
(u0)

.

.

.

Substitution Equation (3.4), Equation (3.5) and Equation (3.6) in Equation
(3.3), we have

∞∑
n=0

un (x, s) =
1
s
f1 (x) +

1
s2
f2 (x) +

1
sβ
Lβ [h (x, t)]− a

sβ
Lβ

[
Tα
x

(
∞∑
n=0

un (x, t)

)]
− b

sβ
Lβ

[
∞∑
n=0

un (x, t)

]
− 1

sβ
Lβ

[
∞∑
n=0

An

]
,

(3.7)
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Hence,

u0 (x, s) =
1
s
f1 (x) +

1
s2
f2 (x) +

1
sβ
Lβ [h (x, t)] = f3 (x, s)

u1 (x, s) = − a
sβ
Lβ [T

α
x (u0 (x, t))]− b

sβ
Lβ [u0 (x, t)]− 1

sβ
Lβ [A0]

.

.

.
un+1 (x, s) = − a

sβ
Lβ [T

α
x (un (x, t))]− b

sβ
Lβ [un (x, t)]− 1

sβ
Lβ [An]

(3.8)

When the inverse Laplace transform Equation (3.8) is applied, we get

u0 (x, t) = f3 (x, t)

un+1 (x, t) = −L−1
[

a
sβ
Lβ (aT

2α
x (un (x, t)) + bun (x, t) + An)

] (3.9)

4 Nonlinear Applications

As application, we begin by the following nonlinear example:

4.1 Example 1

We consider the nonlinear fractional equation

T β
t u (x, t)− Tα

x u (x, t) = λuγ (x, t) , 1 < α, β ≤ 2. (4.1)

with the initial conditions:

u (x, 0) = g1 (x) , ut (x, 0) = g2 (x) . (4.2)

We have

u (x, s) = 1
s
u (x, 0) + 1

s2
ut (x, 0) +

1
sβ
Lβ [T

α
x u (x, t)] +

λ
sβ
Lβ [u

γ (x, t)] (4.3)

By using the initial condition, the following recurrence relational is obtained

u (x, s) = g1(x)
s

+ g2(x)
s2

+ 1
sβ
Lβ (T

α
x u (x, t) + λuγ (x, t)) (4.4)

Applying the inverse Laplace transform, to both sides of Equation (4.4) yields:

u (x, t) = g1 (x) + tg2 (x) + L−1
β [Tα

x u (x, t) + λuγ (x, t)] (4.5)

Case 1: For γ = 1
We have

∞∑
n=0

un (x, t) = g1 (x) + tg2 (x) + +L−1
β

[
1
sβ
Lβ

[
∞∑
n=0

Tα
x un (x, t) +

∞
λ
∑

n=0

un (x, t)

]]
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Hence,

u0 (x, t) = g1 (x) + tg2 (x)

un+1 (x, t) = L−1
β

[
1
sβ
Lβ

[
∞∑
n=0

Tα
x un (x, t) + λ

∞∑
n=0

un (x, t)

]]
(4.6)

Consequently

u1 (x, t) = L−1
β

[
1
sβ
Lβ (T

α
x u0 (x, t) + λu0 (x, t))

]
= (λg1 (x) + Tα (g1 (x)))

tβ

Γ(β+1)

+(λg2 (x) + Tα (g2 (x)))
tβ+1

Γ(β+2)

u2 (x, t) = L−1
β

[
1
sβ
Lβ (T

α
x u1 (x, t) + λu1 (x, t))

]
= L−1

β

 1
sβ
Lβ


Tα
x

( (
(λg1 (x) + Tα

x (g1 (x)))
tβ

Γ(β+1)

)
+(λg2 (x) + Tα

x (g2 (x)))
tβ+1

Γ(β+2)

)

+λ

(
(λg1 (x) + Tα

x (g1 (x)))
tβ

Γ(β+1)

+(λg2 (x) + Tα (g2 (x)))
tβ+1

Γ(β+2)

)



= [2λTα
x (g1 (x)) + T 2α

x (g1 (x)) + λ2g1 (x)]
t2β

Γ(2β+1)

+ [2λTα
x (g2 (x)) + T 2α

x (g2 (x)) + λ2g2 (x)]
t2β+1

Γ(2β+2)

u3 (x, t) = L−1
β

[
1
sβ
Lβ

(
∂αu2(x,t)

∂xα + λu2 (x, t)
)]

= L−1
β

 1
sβ
Lβ


Tα
x

(
[2λTα

x (g1 (x)) + T 2α
x (g1 (x)) + λ2g1 (x)]

t2β

Γ(2β+1)

[2λTα
x (g2 (x)) + T 2α

x (g2 (x)) + λ2g2 (x)]
t2β+1

Γ(2β+2)

)

+λ

(
[2λTα

x (g1 (x)) + T 2α
x (g1 (x)) + λ2g1 (x)]

t2β

Γ(2β+1)

[2λTα
x (g2 (x)) + T 2α

x (g2 (x)) + λ2g2 (x)]
t2β+1

Γ(2β+2)

)



= [3λT 2α
x (g1 (x)) + 3λ2Tα

x (g1 (x)) + T 3α
x (g1 (x)) + λ3g1 (x)]

t3β

Γ(3β+1)

+ [3λT 2α
x (g2 (x)) + 3λ2Tα

x (g2 (x)) + T 3α
x (g2 (x)) + λ3g2 (x)]

t3β+1

Γ(3β+2)

.

.

.

For λ = 1, g1 (x) = 1 + sinx, g2 (x) = 0 and α = 2, we obtain

u0 (x, t) = 1 + sinx

u1 (x, t) =
tβ

Γ(β+1)

.

.

.

un (x, t) =
tnβ

Γ(nβ+1)
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Thus,

u (x, t) = 1 + sinx+ tβ

Γ(β+1)
+ t2β

Γ(2β+1)
+ ...+ tnβ

Γ(nβ+1)
+ ... (4.7)

To find the validity of the approximated solution, when β = 2, the exact
solution is:

u (x, t) = sinx+ 1 + t2

Γ(3)
+ t4

Γ(5)
+ ...+ t2n

Γ(2n+1)
+ ... = sinx+ cosh t. (4.8)

Figure 1.1 is a graph of the solution (4.7), respectively for β equal to 1.25, 1.5, 1.75,
and 2.

itbpF2.2381in1.6639in0inF igure itbpF2.2381in1.6639in0inF igure
(a) (b)

itbpF2.207in1.6405in0inF igure itbpF2.175in1.6172in0inF igure
(c) (d)

Fig1.1 Graph of Eq.(4.7) with different β values
(a) β = 1.25, (b) β = 1.5, (c) β = 1.75, (d) β = 2,

Case 2: For γ ̸= 1

We have

∞∑
n=0

un (x, t) = g1 (x) + tg2 (x) + L−1
β

[
1
sβ
Lβ

[
∞∑
n=0

Tα
x un (x, t) + λ

∞∑
n=0

An

]]
(4.9)

The few components of Adomian polynomials are given by

A0 = uγ
0

A1 = γu1u
γ−1
0

A2 = γu2u
γ−1
0 + γ(γ−1)

2
u2
1u

γ−2
0

A3 = γu3u
γ−1
0 + γ (γ − 1)u1u2u

γ−2
0 + γ(γ−1)(γ−2)

6
u3
1u

γ−3
0

(4.10)

Therefore,

u0 (x, t) = g1 (x) + tg2 (x)

un+1 (x, t) = L−1
β

[
1
sβ
Lβ

[
∞∑
n=0

Tα
x un (x, t) + λ

∞∑
n=0

An

]]
(4.11)
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Consequently

u1 (x, t) = L−1
β

[
1
sβ
Lβ (T

α
x u0 (x, t) + λA0)

]
= L−1

β

[
1
sβ
Lβ (T

α
x u0 + λuγ

0)
]

u2 (x, t) = L−1
β

[
1
sβ
Lβ (T

α
x u1 (x, t) ,+λA1)

]
= L−1

β

[
1
sβ
Lβ

(
Tα
x u1 + λγu1u

γ−1
0

)]
u3 (x, t) = L−1

β

[
1
sβ
Lβ (T

α
x u2 (x, t) + λA2)

]
= L−1

β

[
1
sβ
Lβ

(
Tα
x u2 + λγu2u

γ−1
0 + λγ(γ−1)

2
u2
1u

γ−2
0

)]
.
.
.

For λ = 1, γ = 2, g1 (x) = x2, g2 (x) = 0, we obtain

u0 (x, t) = x2

u1 (x, t) = L−1
β

[
1
sβ
Lβ (T

α
x u0 (x, t) + A0)

]
= L−1

β

[
1
sβ
Lβ (T

α
x u0 (x, t) + u2

0)
]
= L−1

β

[
1
sβ
Lβ (2x

2−α + x4)
]

= (2x2−α + x4) tβ

Γ(β+1)

u2 (x, t) = L−1
β

[
1
sβ
Lβ (T

α
x u1 (x, t) + A1)

]
= L−1

β

[
1
sβ
Lβ

(
(2 (2− α) (1− α)x2−2α + 16x4−α + 2x6) tβ

Γ(β+1)

)]
= (2 (2− α) (1− α)x2−2α + 16x4−α + 2x6) t2β

Γ(2β+1)

.

.

.

(4.12)

Thus,

u (x, t) = x2 + (2x2−α + x4) tβ

Γ(β+1)

+(2 (2− α) (1− α)x2−2α + 16x4−α + 2x6) t2β

Γ(2β+1)
+ ...

(4.13)

Figure 1.2 is a graph of the solution (4.13), for α, β equal to 1.25, 1.5, 1.75, and
2.

itbpF2.29in1.702in0inF igure itbpF2.3004in1.7097in0inF igure
(a) (b)

itbpF2.2174in1.6483in0inF igure itbpF2.2174in1.6483in0inF igure
(c) (d)

Fig1.2 Graph of Eq.(4.13) with different α, β values
(a) α = β = 1.25, (b) α = β = 1.5, (c) α = β = 1.75, (d) α = β = 2,
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4.2 Example 2

We consider the nonlinear fractional equation

T β
t u (x, t)− Tα

x u (x, t) = u (x, t) + u2 (x, t) , 1 < α, β ≤ 2. (4.14)

with the initial conditions:

u (x, 0) = 1 + x, ut (x, 0) = 0. (4.15)

When the Laplace transform is applied to both sides of Equation (4.14), we
can write

u (x, s) = 1
s
u (x, 0) + 1

s2
ut (x, 0) +

1
sβ
Lβ [T

α
x u (x, t)]

+ 1
sβ
Lβ [u

2 (x, t)] 1
sβ
Lβ [u (x, t)]

(4.16)

Hence,

u (x, s) =
x2

s
+

1

sβ
Lβ

(
Tα
x u (x, t) + u2 (x, s) + u (x, s)

)
(4.17)

Applying the inverse Laplace transform, to both sides of Equation (4.17) yields:

u (x, t) = x2 + L−1
β

[
1

sβ
Lβ

(
Tα
x u (x, t) + u2 (x, t) + u (x, t)

)]
(4.18)

Hence,

∞∑
n=0

un (x, t) = x2 + L−1
β

[
1
sβ
Lβ

[
∞∑
n=0

Tα
x un (x, t) +

∞∑
n=0

Bn + un (x, t)

]]
(4.19)

On the other hand, we have

B0 = u2
0

B1 = 2u0u1

B2 = 2u0u2 + u2
1

B3 = 2u0u3 + 2u1u2

Then

u0 (x, t) = 1 + x2,

un+1 (x, t) = L−1
β

[
1
sβ
Lβ

[
∞∑
n=0

Tα
x un (x, t) +

∞∑
n=0

Bn + un (x, t)

]]
(4.20)

Consequently

u1 (x, t) = L−1
β

[
1
sβ
Lβ (T

α
x u0 (x, t) +B0 + u0 (x, t))

]
= L−1

β

[
1
sβ
Lβ (T

α
x u0 + u2

0 + u0)
]

= L−1
β

[
1
sβ
Lβ (2x

2−α + x4 + 2 + 3x2)
]

= (2x2−α + x4 + 3x2 + 2) tβ

Γ(β+1)
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u2 (x, t) = L−1
β

[
1
sβ
Lβ (T

α
x u1 (x, t) +B1 + u1 (x, t))

]
= L−1

β

[
1
sβ
Lβ (T

α
x u1 + 2u0u1 + u1)

]
= L−1

β

 1
sβ
Lβ


Tα
x

(
(2x2−α + x4 + 3x2 + 2) tβ

Γ(β+1)

)
+2 (1 + x2)

(
(2x2−α + x4 + 3x2 + 2) tβ

Γ(β+1)

)
+(2x2−α + x4 + 3x2 + 2) tβ

Γ(β+1)




= L−1
β

[
1
sβ
Lβ

(
Tα
x

(
(2x2−α + x4 + 3x2 + 2) tβ

Γ(β+1)

)
+(6x2−α + 4x4−α + 2x6 + 9x4 + 13x2 + 6) tβ

Γ(β+1)

)]
= (2 (2− α)x2−2α + 8x4−α + 12x2−α + 2x6 + 9x4 + 13x2 + 6) t2β

Γ(2β+1)

.

.

.

Thus,

u (x, t) = 1 + x2 + (2x2−α + x4 + 3x2 + 2) tβ

Γ(β+1)

+(2 (2− α)x2−2α + 8x4−α + 12x2−α + 2x6 + 9x4 + 13x2 + 6) t2β

Γ(2β+1)
...

(4.21)
Figure 1.3 is a graph of the solution (4.21), for α, β equal to 1.25, 1.5, 1.75, and
2.

itbpF2.3627in1.7582in0inF igure itbpF2.373in1.7651in0inF igure
(a) (b)

itbpF2.4146in1.7953in0inF igure itbpF2.4362in1.8118in0inF igure
(c) (d)

Fig1.3 Graph of Eq.(4.21) with different α, β values
(a) α = β = 1.25, (b) α = β = 1.5, (c) α = β = 1.75, (d) α = β = 2,

4.3 Example 3

Consider the nonlinear fractional wave equation [16, 17]

Tα
t u (x, t) + aTα

x u (x, t) + bu (t, x) + cu3 (t, x) = 0,

0 < x < 1, t > 0, 1 < α, β ≤ 2.
(4.22)

with the initial conditions:

u (x, 0) = h1 (x) , ut (x, 0) = h2 (x) . (4.23)
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where a, b, c are constants.
We have

u0 (x, t) = h1 (x) + t× h2 (x)

un+1 (x, t) = −L−1
β

[
1
sβ
Lβ

[
a

∞∑
n=0

Tα
x un (x, t) + b

∞∑
n=0

un (x, t) + c
∞∑
n=0

Cn

]]
(4.24)

where Cn are given by

Cn = 1
n!

dn

dλn

[(
∞∑
i=0

λiui

)3
]
λ=0

, n = 0, 1, 2, ... (4.25)

Hence,

C0 =
1
0!

d0

dλ0

[(
∞∑
i=0

λiui

)3
]
λ=0

= (u0)
3

C1 =
1
1!

d1

dλ1

[(
∞∑
i=0

λiui

)3
]
λ=0

= 3u1 (u0)
2

C2 =
1
2!

d2

dλ2

[(
∞∑
i=0

λiui

)3
]
λ=0

= 3 (u1)
2 (u0) + 3u2 (u0)

2

C3 =
1
3!

d3

dλ3

[(
∞∑
i=0

λiui

)3
]
λ=0

= 3u3 (u0)
2 + 6 (u0) (u1) (u2) + (u1)

3

For α = 2, h1 (x) = x and h2 (x) = 0, we obtain the following recurrence
relations,

u0 (x, t) = x
un+1 (x, t) = −L−1

β

[
1
sβ
Lβ [aT

α
x unxx (x, t) + bun (x, t) + cCn]

]
Consequently

u0 (x, t) = x,

u1 (x, t) = −L−1
β

[
1
sβ
Lβ

[
au0xx (x, t) + bu0 (x, t) + c (u0)

3]]
= − (bx+ cx3) tβ

Γ(β+1)

u2 (x, t) = −L−1
β

[
1
sβ
Lβ

[
au1xx (x, t) + bu1 (x, t) + 3cu1 (u0)

2]]
= −L−1

β

[
1
sβ
Lβ

[
−6acx− b (bx+ cx3)− 3c (bx+ cx3) (x)2

]]
[(6ac+ b2)x+ 4bcx3 + 3c2x5] t2β

Γ(2β+1)

u3 (x, t) = −L−1
β

[
1
sβ
Lβ

[
au2xx (x, t) + bu2 (x, t) + 3c (u1)

2 (u0) + 3cu2 (u0)
2]]

Thus,

u (x, t) = x− (bx+ cx3) tβ

Γ(β+1)

+((6ac+ b2)x+ 4bcx3 + 3c2x5) t2β

Γ(2β+1)
+ ...

(4.26)
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Figure 1.4 is a graph of the solution (4.21), for a = b = c = 1 and α, β equal
to 1.25, 1.5, 1.75, and 2.

itbpF2.6126in1.9424in0inF igure itbpF2.6022in1.9346in0inF igure
(a) (b)

itbpF2.4984in1.8568in0inF igure itbpF2.4984in1.8576in0inF igure
(c) (d)

Fig1.4 Graph of Eq.(4.26) with different α, β values
(a) α = β = 1.25, (b) α = β = 1.5, (c) α = β = 1.75, (d) α = β = 2,

5 Conclusion and Open Problem

The LDM method is applied for some nonlinear conformable fractional differ-
ential problems. It is shown that this method is a powerful device to solve not
only linear problems but it is also valid for nonlinear ones.
At the end of this paper, we shall propose the following open question:
We think it is important to address a comparative study with other numerical
methods for the above general conformable fractional evolution problem.
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