Existence of Multiple Positive Solutions
for $3n^{th}$ Order Three-Point Boundary
Value Problems on Time Scales

K. R. Prasad1 and N. Sreedhar2

1Department of Applied Mathematics, Andhra University,
Visakhapatnam, 530 003, India.
e-mail:rajendra92@rediffmail.com

2Department of Mathematics, GITAM University,
Visakhapatnam, 530 045, India.
e-mail:sreedharnamburi@rediffmail.com

Abstract

We establish the existence of at least three positive solutions for the $3n^{th}$
order three-point boundary value problem on time scales by using Leggett-
Williams fixed point theorem. We also establish the existence of at least $2m-1$
positive solutions for an arbitrary positive integer m.

Keywords: Boundary value problem, Cone, Green’s function, Positive so-
lution, Time scale.

AMS Subject Classification: 39A10, 34B05.

1 Introduction

In this paper, we establish the existence of multiple positive solutions for the
$3n^{th}$ order boundary value problem on time scales,

$$(-1)^ny^{\Delta^{(3n)}}(t) = f(t, y(t)), \quad t \in [t_1, \sigma(t_3)],$$ \hfill (1.1)
Existence of Multiple Positive Solutions

satisfying the general three-point boundary conditions,
\[
\begin{align*}
\alpha_{3i-2}y^{(3i-3)}(t_1) + \alpha_{3i-2}y^{(3i-2)}(t_1) + \alpha_{3i-2}y^{(3i-1)}(t_1) &= 0, \\
\alpha_{3i-1}y^{(3i-3)}(t_2) + \alpha_{3i-1}y^{(3i-2)}(t_2) + \alpha_{3i-1}y^{(3i-1)}(t_2) &= 0, \\
\alpha_{3i}y^{(3i-3)}(\sigma(t_3)) + \alpha_{3i}y^{(3i-2)}(\sigma(t_3)) + \alpha_{3i}y^{(3i-1)}(\sigma(t_3)) &= 0,
\end{align*}
\]
for \(1 \leq i \leq n\), where \(n \geq 1\), \(\alpha_{3i-2,j}, \alpha_{3i-1,j}, \alpha_{3i,j}\), for \(j = 1, 2, 3\), are real constants, \(t_1 < t_2 < \sigma(t_3)\). We assume that \(f : [t_1, \sigma(t_3)] \times \mathbb{R}^+ \to \mathbb{R}^+\) is continuous and \(f(t, \cdot)\) does not vanish identically on any subset of \([t_1, \sigma(t_3)]\). The study of the existence of positive solutions of the higher order boundary value problems (BVPs) arises in various fields of applied mathematics and physics. BVPs describe many phenomena in the applied mathematical sciences, which can be found in the theory of nonlinear diffusion generated by nonlinear sources, in thermal ignition of gases and in chemical or biological problems. In these applied settings only positive solutions are meaningful.

Recently, there has been much attention focussed on existence of positive solutions to the BVPs on time scales due to their striking applications to almost all area of science, engineering and technology. Studying BVPs on time scales will unify the theory of differential and difference equations and provide an accurate information of phenomena that manifest themselves partly in continuous time and partly in discrete time. The existence of positive solutions are studied by many authors. A few papers along these lines are Agarwal and Regan [1], Anderson [4], Anderson and Avery [6], F. M. Atici and G. Sh.Guseinov [7], Kaufmann [19] and Sun [20].

For convenience, we use the following notations. For \(1 \leq i \leq n\), let us denote, \(\beta_{i,j} = \alpha_{3i-3+j,1}t_1^2 + \alpha_{3i-3+j,2}t_1^2 + 2\alpha_{3i-3+j,3}, \quad \gamma_{i,j} = \alpha_{3i-3+j,1}t_1 + \alpha_{3i-3+j,2}(t_1 + \sigma(t_3)) + 2\alpha_{3i-3+j,3}, \quad \beta_{i} = \alpha_{3i-3+j,1}\sigma(t_3) + 2\alpha_{3i-2}(t_3) + 2\alpha_{3i-3}, \quad \gamma_{i} = \alpha_{3i-3}(t_3) + 2\alpha_{3i-3}
\]
for \(1 \leq i \leq n\), we define,
\[
\begin{align*}
M_{i,j} &= \frac{\beta_{i} \gamma_{i,j} \beta_{i,j} \gamma_{i,j}}{2(\alpha_{3i-3+j,1} \beta_{i,k} - \alpha_{3i-3+k,1} \beta_{i,k})}, \\
q_i &= \min\left\{m_{i,12}, m_{i,13}, m_{i,23}\right\}, \\
d_i &= \alpha_{3i-3,1}(\beta_{i} \gamma_{i,1} - \beta_{i} \gamma_{i,1}) - \beta_{i} (\alpha_{3i-1,1} \gamma_{i,1} - \alpha_{3i-1,1} \gamma_{i,1}) + \gamma_{i,1}(\alpha_{3i-1,1} \beta_{i,1} - \alpha_{3i-1,1} \beta_{i,1}) \\
&\text{and } h_i = \alpha_{3i-3,1,1}(s) s^2(s) - \beta_{i,1}(s) s^2(s) + \gamma_{i,1}, \quad j = 1, 2, 3.
\end{align*}
\]
We assume the following conditions throughout this paper:

(A1) \(\alpha_{3i-2,1} > 0, \alpha_{3i-1,1} > 0, \alpha_{3i,1} > 0\) and \(\frac{\alpha_{3i,2}}{\alpha_{3i-1,2}} > \frac{\alpha_{3i-1,2}}{\alpha_{3i-2,1}}\)

for all \(1 \leq i \leq n\),

(A2) \(p_i \leq t_1 < t_2 < \sigma(t_3) \leq q_i\) and \(2\alpha_{3i-3,1} \alpha_{3i-2,1} > \alpha_{3i-2,2}, \alpha_{3i-1,1} < \alpha_{3i-1,2}, \alpha_{3i,1} > \alpha_{3i,2}, \alpha_{3i-2,1} > \alpha_{3i-2,2}\), for all \(1 \leq i \leq n\).
The point \(t \in [t_1, \sigma(t_3)] \) is not left dense and right scattered at the same time.

This paper is organized as follows. In Section 2, we establish certain lemmas which are needed in our main results. In Section 3, we establish the existence of at least three positive solutions of the BVP (1.1)-(1.2) by using the Leggett-Williams fixed point theorem. We also establish the existence of at least \(2m-1 \) positive solutions of the BVP (1.1)-(1.2) for an arbitrary positive integer \(m \). Finally as an application, we give an example to illustrate our result.

2 The Green’s Function and Bounds

In this section, we construct the Green’s function for the homogenous problem corresponding to (1.1)-(1.2) and estimate bounds for the Green’s function.

Let \(G_i(t, s) \) be the Green’s function for the homogeneous BVP,

\[-y^{\Delta^3}(t) = 0, \quad t \in [t_1, \sigma(t_3)],\]

satisfying the general three-point boundary conditions,

\[
\begin{align*}
\alpha_{3i-2,1}y(t_1) + \alpha_{3i-2,2}y^{\Delta}(t_1) + \alpha_{3i-2,3}y^{\Delta^2}(t_1) &= 0, \\
\alpha_{3i-1,1}y(t_2) + \alpha_{3i-1,2}y^{\Delta}(t_2) + \alpha_{3i-1,3}y^{\Delta^2}(t_2) &= 0, \\
\alpha_{3i,1}y(\sigma(t_3)) + \alpha_{3i,2}y^{\Delta}(\sigma(t_3)) + \alpha_{3i,3}y^{\Delta^2}(\sigma(t_3)) &= 0,
\end{align*}
\]

for \(1 \leq i \leq n \).

Lemma 2.1 For \(1 \leq i \leq n \), the Green’s function \(G_i(t, s) \) for the homogeneous BVP (2.1)-(2.2) is given by

\[
G_i(t, s) = \begin{cases}
G_i(t, s), & t_1 < \sigma(s) < t < t_2 < \sigma(t_3) \\
G_i(t, s), & t_1 \leq t < s < t_2 < \sigma(t_3) \\
G_i(t, s), & t_1 \leq t < t_2 < s < \sigma(t_3)
\end{cases}
\]

where

\[
G_i(t, s) = \frac{1}{2d_i}[-(\beta_{i_2}\gamma_{i_3} - \beta_{i_3}\gamma_{i_2}) + t(\alpha_{3i-1,1}\gamma_{i_3} - \alpha_{3i,1}\gamma_{i_2}) - t^2(\alpha_{3i-1,1}\beta_{i_3} - \alpha_{3i,1}\beta_{i_2})]t_i,
\]
Existence of Multiple Positive Solutions

Theorem 2.3

Similarly, we can establish the positivity of the Green’s function in the remaining cases.

\[G_{i2}(t, s) = \frac{1}{2d_i} \{- (\beta_{t_i} \gamma_{i_3} - \beta_{i_3} \gamma_{t_i}) + t(\alpha_{3i-2,1} \gamma_{i_3} - \alpha_{3i,1} \gamma_{t_i}) - t^2(\alpha_{3i-2,1} \beta_{i_3} - \\
\alpha_{3i,1} \beta_{t_i})\} \],

\[G_{i3}(t, s) = \frac{1}{2d_i} \{[\beta_{t_i} \gamma_{i_2} - \beta_{i_2} \gamma_{t_i}] - t(\alpha_{3i-2,1} \gamma_{i_2} - \alpha_{3i-1,1} \gamma_{t_i}) + t^2(\alpha_{3i-2,1} \beta_{i_2} - \\
\alpha_{3i-1,1} \beta_{t_i})\} \],

\[G_{i4}(t, s) = \frac{1}{2d_i} \{- (\beta_{t_2} \gamma_{i_3} - \beta_{i_3} \gamma_{t_2}) + t(\alpha_{3i-1,1} \gamma_{i_3} - \alpha_{3i,1} \gamma_{t_2}) - t^2(\alpha_{3i-1,1} \beta_{i_3} - \\
\alpha_{3i,1} \beta_{t_2})\} \],

\[G_{i5}(t, s) = \frac{1}{2d_i} \{[\beta_{t_i} \gamma_{i_2} - \beta_{i_2} \gamma_{t_i}] - t(\alpha_{3i-2,1} \gamma_{i_2} - \alpha_{3i-1,1} \gamma_{t_i}) + t^2(\alpha_{3i-2,1} \beta_{i_2} - \\
\alpha_{3i-1,1} \beta_{t_i})\} \],

\[G_{i6}(t, s) = \frac{1}{2d_i} [- (\beta_{t_2} \gamma_{i_3} - \beta_{i_3} \gamma_{t_2}) + t(\alpha_{3i-1,1} \gamma_{i_3} - \alpha_{3i,1} \gamma_{t_2}) - t^2(\alpha_{3i-1,1} \beta_{i_3} - \\
\alpha_{3i,1} \beta_{t_2})\} \].

Lemma 2.2

Assume that the conditions (A1)-(A4) are satisfied. Then, for \(1 \leq i \leq n\), the Green’s function \(G_i(t, s)\) of (2.1)-(2.2) is positive, for all \((t, s) \in [t_1, \sigma(t_3)] \times [t_1, t_3]\).

Proof: For \(1 \leq i \leq n\), the Green’s function \(G_i(t, s)\) is given in (2.3). By using the conditions (A1)-(A4), we obtain

\[G_{i1}(t, s) > 0, \text{ for all } (t, s) \in [t_1, \sigma(t_3)] \times [t_1, t_3]. \]

Similarly, we can establish the positivity of the Green’s function in the remaining cases.

\[0 < m_i = \min \left\{ \frac{G_{i1}(\sigma(t_3), s)}{G_{i1}(t_1, s)}, \frac{G_{i2}(t_1, s)}{G_{i1}(\sigma(t_3), s)}, \frac{G_{i3}(t_1, s)}{G_{i2}(\sigma(t_3), s)}, \frac{G_{i4}(\sigma(t_3), s)}{G_{i3}(t_1, s)} \right\} < 1. \]

Theorem 2.3

Assume that the conditions (A1)-(A4) are satisfied. Then, for \(1 \leq i \leq n\), the Green’s function \(G_i(t, s)\) satisfies the following inequality,

\[m_i G_i(\sigma(s), s) \leq G_i(t, s) \leq G_i(\sigma(s), s), \text{ for all } (t, s) \in [t_1, \sigma(t_3)] \times [t_1, t_3], \]

where

\[m_i = \min \left\{ \frac{G_{i1}(\sigma(t_3), s)}{G_{i1}(t_1, s)}, \frac{G_{i2}(t_1, s)}{G_{i1}(\sigma(t_3), s)}, \frac{G_{i3}(t_1, s)}{G_{i2}(\sigma(t_3), s)}, \frac{G_{i4}(\sigma(t_3), s)}{G_{i3}(t_1, s)} \right\} < 1. \]
Proof: For $1 \leq i \leq n$, the Green’s function $G_i(t, s)$ is given (2.3) in six different cases. In each case we prove the inequality as in (2.4).

Case 1. For $t_1 < \sigma(s) < t \leq t_2 < \sigma(t_3)$.

\[
\frac{G_i(t, s)}{G_i(\sigma(s), s)} = \frac{G_i(t, s)}{G_i(\sigma(s), s)} \geq \frac{G_i(t_1, s)}{G_i(\sigma(t_3), s)} = \frac{G_i(\sigma(t_3), s)}{G_i(t_1, s)}.
\]

Therefore, $G_i(t, s) \leq G_i(\sigma(s), s)$ and also $G_i(t_2, s) \geq \frac{G_i(\sigma(t_3), s)}{G_i(t_1, s)} G_i(\sigma(s), s)$, for all $(t, s) \in [t_1, \sigma(t_3)] \times [t_1, t_3]$.

Case 2. For $t_1 \leq t < t_2 < s < \sigma(t_3)$.

\[
\frac{G_i(t, s)}{G_i(\sigma(s), s)} = \frac{G_i(t, s)}{G_i(\sigma(s), s)} \geq \frac{G_i(t_1, s)}{G_i(\sigma(t_3), s)} = \frac{G_i(\sigma(t_3), s)}{G_i(t_1, s)}.
\]

Therefore, $G_i(t, s) \leq G_i(\sigma(s), s)$ and also $G_i(t_2, s) \geq \frac{G_i(\sigma(t_3), s)}{G_i(t_1, s)} G_i(\sigma(s), s)$, for all $(t, s) \in [t_1, \sigma(t_3)] \times [t_1, t_3]$.

Case 3. For $t_1 \leq t < s < t_2 < \sigma(t_3)$.

From (A1)-(A4) and case 2, we have $G_i(t, s) \leq G_i(\sigma(s), s)$ and also

\[
G_i(t_2, s) \geq \min \left\{ \frac{G_i(t_1, s)}{G_i(\sigma(t_3), s)}, \frac{G_i(\sigma(t_3), s)}{G_i(t_1, s)} \right\} G_i(\sigma(s), s).
\]

Therefore, $G_i(t, s) \leq G_i(\sigma(s), s)$ and

\[
G_i(t, s) \geq \min \left\{ \frac{G_i(t_1, s)}{G_i(\sigma(t_3), s)}, \frac{G_i(\sigma(t_3), s)}{G_i(t_1, s)} \right\} G_i(\sigma(s), s),
\]

where t_1, t_2, t_3 are the points where G_i changes its sign.
for all \((t, s) \in [t_1, \sigma(t_3)] \times [t_1, t_3]\).

Case 4. For \(t_1 < t_2 < \sigma(s) < t \leq \sigma(t_3)\).

From (A1)-(A4) and case 1, we have \(G_i(t, s) \leq G_i(\sigma(s), s)\) and
\[
\frac{G_i(t, s)}{G_i(\sigma(s), s)} \geq \min \left\{ \frac{G_i(\sigma(t_3), s)}{G_i(t_1, s)}, \frac{G_i(\sigma(t_3), s)}{G_i(t_1, s)} \right\}.
\]

Therefore, \(G_i(t, s) \leq G_i(\sigma(s), s)\) and
\[
G_i(t, s) \geq \min \left\{ \frac{G_i(\sigma(t_3), s)}{G_i(t_1, s)}, \frac{G_i(\sigma(t_3), s)}{G_i(t_1, s)} \right\} G_i(\sigma(s), s),
\]
for all \((t, s) \in [t_1, \sigma(t_3)] \times [t_1, t_3]\).

Case 5. For \(t_1 < t_2 \leq t < s < \sigma(t_3)\).

From case 2, we have \(G_i(t, s) \leq G_i(\sigma(s), s)\) and \(G_i(t, s) \geq \frac{G_i(\sigma(t_3), s)}{G_i(t_1, s)} G_i(\sigma(s), s)\),
for all \((t, s) \in [t_1, \sigma(t_3)] \times [t_1, t_3]\).

Case 6. For \(t_1 \leq \sigma(s) < t_2 < t < \sigma(t_3)\).

From case 1, we have \(G_i(t, s) \leq G_i(\sigma(s), s)\) and \(G_i(t, s) \geq \frac{G_i(\sigma(t_3), s)}{G_i(t_1, s)} G_i(\sigma(s), s)\),
for all \((t, s) \in [t_1, \sigma(t_3)] \times [t_1, t_3]\).

From all above cases, for \(1 \leq i \leq n\), we have
\[
m_i G_i(\sigma(s), s) \leq G_i(t, s) \leq G_i(\sigma(s), s), \text{ for all } (t, s) \in [t_1, \sigma(t_3)] \times [t_1, t_3],
\]
where
\[
0 < m_i = \min \left\{ \frac{G_i(\sigma(t_3), s)}{G_i(t_1, s)}, \frac{G_i(\sigma(t_3), s)}{G_i(t_1, s)} \right\} < 1.
\]

\[\square\]

Lemma 2.4 Assume that the conditions (A1)-(A4) are satisfied and \(G_i(t, s)\) is defined as in (2.3). Take \(H_1(t, s) = G_1(t, s)\) and recursively define
\[
H_j(t, s) = \int_{t_1}^{\sigma(t_3)} H_{j-1}(t, r) G_j(r, s) \Delta r, \text{ for } 2 \leq j \leq n.
\]

Then \(H_n(t, s)\) is the Green’s function for the homogeneous BVP corresponding to (1.1)-(1.2).
Lemma 2.5 Assume that the conditions (A1)-(A4) hold. If we define
\[K = \prod_{j=1}^{n-1} K_j \quad \text{and} \quad L = \prod_{j=1}^{n-1} m_j L_j, \]
then the Green’s function \(H_n(t, s) \) in Lemma 2.4 satisfies
\[0 \leq H_n(t, s) \leq K \| G_n(\cdot, s) \|, \quad \text{for all} \quad (t, s) \in [t_1, \sigma(t_3)] \times [t_1, t_3] \]
and
\[H_n(t, s) \geq m_n L \| G_n(\cdot, s) \|, \quad \text{for all} \quad (t, s) \in [t_2, \sigma(t_3)] \times [t_1, t_3], \]
where \(m_n \) is given as in Theorem 2.3,
\[K_j = \int_{t_1}^{\sigma(t_3)} \| G_j(\cdot, s) \| \Delta s > 0, \quad \text{for} \quad 1 \leq j \leq n, \]
\[L_j = \int_{t_2}^{\sigma(t_3)} \| G_j(\cdot, s) \| \Delta s > 0, \quad \text{for} \quad 1 \leq j \leq n, \]
and \(\| \cdot \| \) is defined by
\[\| x \| = \max_{t \in [t_1, \sigma(t_3)]} |x(t)|. \]

3 Existence of Multiple Positive Solutions

In this section, we establish the existence of at least three positive solutions to the BVP (1.1)-(1.2) by using the Leggett-Williams fixed point theorem. We also establish the existence of at least \(2m - 1 \) positive solutions for the BVP (1.1)-(1.2) for an arbitrary positive integer \(m \).

Let \(E \) be a real Banach space with cone \(P \). A map \(S: P \to [0, \infty) \) is said to be a nonnegative continuous concave functional on \(P \), if \(S \) is continuous and
\[S(\lambda x + (1 - \lambda)y) \geq \lambda S(x) + (1 - \lambda)S(y), \]
for all \(x, y \in P \) and \(\lambda \in [0, 1] \). Let \(\alpha \) and \(\beta \) be two real numbers such that \(0 < \alpha < \beta \) and \(S \) be a nonnegative continuous concave functional on \(P \). We define the following convex sets
\[P_\alpha = \{ y \in P : \| y \| < \alpha \} \quad \text{and} \]
\[P(S, \alpha, \beta) = \{ y \in P : \alpha \leq S(y), \| y \| \leq \beta \}. \]
Theorem 3.1 [Leggett-Williams fixed point theorem] Let $T : P_c \to P_c$ be completely continuous and S be a nonnegative continuous concave functional on P such that $S(y) \leq \|y\|$, for all $y \in P_c$. Suppose that there exist a, b, c and d with $0 < d < a < b \leq c$ such that

(i) \{ $y \in P(S,a,b) : S(y) > a$ \} $\neq \emptyset$ and $S(Ty) > a$, for $y \in P(S,a,b),$

(ii) $\|Ty\| < d$, for $\|y\| \leq d,$

(iii) $S(Ty) > a$, for $y \in P(S,a,c)$ with $\|Ty\| > b.$

Then T has at least three fixed points y_1, y_2, y_3 in P_c satisfying

$\|y_1\| < d$, $a < S(y_2)$, $\|y_3\| > d$, $S(y_3) < a.$

Let

$$M = m_n \prod_{j=1}^{n-1} \frac{m_j L_j}{K_j}.$$

Theorem 3.2 Assume that the conditions (A1)-(A4) are satisfied and also assume that there exist real numbers a_0, a_1 and a_2 with $0 < a_0 < a_1 < \frac{a_1}{M} < a_2$ such that

$$f(t, y(t)) < \frac{a_0}{\prod_{j=1}^{n} K_j}, \text{ for } t \in [t_1, \sigma(t_3)] \text{ and } y \in [0, a_0], \quad (3.1)$$

$$f(t, y(t)) > \frac{a_1}{\prod_{j=1}^{n} m_j L_j}, \text{ for } t \in [t_2, \sigma(t_3)] \text{ and } y \in [a_1, \frac{a_1}{M}], \quad (3.2)$$

$$f(t, y(t)) < \frac{a_2}{\prod_{j=1}^{n} K_j}, \text{ for } t \in [t_1, \sigma(t_3)] \text{ and } y \in [0, a_2]. \quad (3.3)$$

Then the BVP (1.1)- (1.2) has at least three positive solutions.

Proof: Let the Banach Space $E = C[t_1, \sigma(t_3)]$ be equipped with the norm

$$\|y\| = \max_{t \in [t_1, \sigma(t_3)]} |y(t)|.$$

We denote

$$P = \{ y \in E : y(t) \geq 0, \ t \in [t_1, \sigma(t_3)] \}.$$

Then, it is obvious that P is a cone in E. For $y \in P$, we define

$$S(y) = \min_{t \in [t_2, \sigma(t_3)]} |y(t)| \text{ and }$$

$$Ty(t) = \int_{t_1}^{\sigma(t_3)} H_n(t, s)f(s, y(s))\Delta s, \ t \in [t_1, \sigma(t_3)].$$

It is easy to see that S is a nonnegative continuous concave functional on P with $S(y) \leq \|y\|$, for $y \in P$ and that $T : P \to P$ is completely continuous and
fixed points of T are solutions of the BVP (1.1)-(1.2). First, we prove that, if there exists a positive number r such that $f(t, y(t)) < \prod_{j=1}^{r} K_j$, for $t \in [t_1, \sigma(t_3)]$ and $y \in [0, r]$, then $T : \overline{P}_r \to P_r$. Indeed, if $y \in \overline{P}_r$, then for $t \in [t_1, \sigma(t_3)]$, we have

$$Ty(t) = \int_{t_1}^{\sigma(t_3)} H_n(t, s) f(s, y(s)) \Delta s$$

$$\leq \frac{r}{\prod_{j=1}^{r} K_j} \int_{t_1}^{\sigma(t_3)} H_n(t, s) \Delta s$$

$$\leq \frac{r}{\prod_{j=1}^{r} K_j} K \int_{t_1}^{\sigma(t_3)} \|G_n(\cdot, s)\| \Delta s = r.$$

Thus, $\|Ty\| < r,$ that is, $Ty \in P_r.$ Hence, we have shown that if (3.1) and (3.3) hold, then T maps \overline{P}_{a_0} into P_{a_0} and \overline{P}_{a_2} into P_{a_2}. Next, we show that $\{y \in P(S, a_1, \frac{a_1}{M}) : S(y) > a_1\} \neq \emptyset$ and $S(Ty) > a_1$, for all $y \in P(S, a_1, \frac{a_1}{M})$. In fact, the constant function

$$\frac{a_1 + \frac{a_1}{M}}{2} \in \{y \in P(S, a_1, \frac{a_1}{M}) : S(y) > a_1\}.$$

Moreover, for $y \in P(S, a_1, \frac{a_1}{M})$, we have

$$\frac{a_1}{M} \geq \|y\| \geq y(t) \geq \min_{t \in [t_2, \sigma(t_3)]} y(t) = S(y) \geq a_1,$$

for all $t \in [t_2, \sigma(t_3)]$. Thus, in view of (3.2), we see that

$$S(Ty) = \min_{t \in [t_2, \sigma(t_3)]} \int_{t_1}^{\sigma(t_3)} H_n(t, s) f(s, y(s)) \Delta s$$

$$\geq \min_{t \in [t_2, \sigma(t_3)]} \int_{t_2}^{\sigma(t_3)} H_n(t, s) f(s, y(s)) \Delta s$$

$$> \frac{a_1}{M} \prod_{j=1}^{n} m_j L_j m_n L \int_{t_2}^{\sigma(t_3)} \|G_n(\cdot, s)\| \Delta s = a_1$$

as required. Finally, we show that, if $y \in P(S, a_1, a_2)$ and $\|Ty\| > \frac{a_1}{M}$, then $S(Ty) > a_1$. To see this, we suppose that $y \in P(S, a_1, a_2)$ and $\|Ty\| > \frac{a_1}{M}$, then, by Lemma 2.5, we have

$$S(Ty) = \min_{t \in [t_2, \sigma(t_3)]} \int_{t_1}^{\sigma(t_3)} H_n(t, s) f(s, y(s)) \Delta s$$

$$\geq \min_{t \in [t_2, \sigma(t_3)]} m_n L \int_{t_2}^{\sigma(t_3)} \|G_n(\cdot, s)\| f(s, y(s)) \Delta s$$

$$\geq m_n L \int_{t_2}^{\sigma(t_3)} \|G_n(\cdot, s)\| f(s, y(s)) \Delta s$$
for all \(t \in [t_1, \sigma(t_3)] \). Thus

\[
S(Ty) \geq \frac{m_n L}{K} \max_{t \in [t_1, \sigma(t_3)]} \int_{t_1}^{\sigma(t_3)} H_n(t, s) f(s, y(s)) \Delta s
\]

\[
= \frac{m_n L}{K} \|Ty\|
\]

\[
> \frac{m_n L}{K} a_1 = a_1.
\]

To sum up, all the hypotheses of Theorem 3.1 are satisfied. Hence \(T \) has at least three fixed points, that is, the BVP (1.1)-(1.2) has at least three positive solutions \(y_1, y_2 \) and \(y_3 \) such that

\[
\|y_1\| < a_0, \ a_1 < \min_{t \in [t_2, \sigma(t_3)]} y_2(t), \ \|y_3\| > a_0, \ \min_{t \in [t_2, \sigma(t_3)]} y_3(t) < a_1.
\]

\[\square \]

Theorem 3.3 Let \(m \) be an arbitrary positive integer. Assume that there exist numbers \(a_i (i = 1, 2, \cdots, m) \) and \(b_j (j = 1, 2, \cdots, m - 1) \) with \(0 < a_1 < b_1 < \frac{b_1}{M} < a_2 < b_2 < \frac{b_2}{M} < \cdots < a_{m-1} < b_{m-1} < \frac{b_{m-1}}{M} < a_m \) such that

\[
f(t, y(t)) < \frac{a_i}{\prod_{j=1}^n K_j}, \text{ for } t \in [t_1, \sigma(t_3)] \text{ and } y \in [0, a_i], i = 1, 2, \cdots, m, \ (3.4)
\]

\[
f(t, y(t)) > \frac{b_j}{\prod_{j=1}^n m_j L_j}, \text{ for } t \in [t_2, \sigma(t_3)] \text{ and } y \in [b_j, \frac{b_j}{M}], j = 1, 2, \cdots, m - 1.
\]

Then the BVP (1.1)-(1.2) has at least \(2m - 1 \) positive solutions in \(\overline{P}_{am} \).

Proof: We use induction on \(m \). First, for \(m = 1 \), we know from (3.4) that \(T : \overline{P}_{a_1} \to P_{a_1} \), then, it follows from Schauder fixed point theorem that the BVP (1.1)-(1.2) has at least one positive solution in \(\overline{P}_{a_1} \). Next, we assume that this conclusion holds for \(m = k \). In order to prove that this conclusion holds for \(m = k + 1 \), we suppose that there exist numbers \(a_i (i = 1, 2, \cdots, k+1) \) and \(b_j (j = 1, 2, \cdots, k) \) with \(0 < a_1 < b_1 < \frac{b_1}{M} < a_2 < b_2 < \frac{b_2}{M} < \cdots < a_k < b_k < \frac{b_k}{M} < a_{k+1} \) such that

\[
f(t, y(t)) < \frac{a_i}{\prod_{j=1}^n K_j}, \text{ for } t \in [t_1, \sigma(t_3)] \text{ and } y \in [0, a_i], i = 1, 2, \cdots, k + 1,
\]

\[
f(t, y(t)) > \frac{b_j}{\prod_{j=1}^n m_j L_j}, \text{ for } t \in [t_2, \sigma(t_3)] \text{ and } y \in [b_j, \frac{b_j}{M}], j = 1, 2, \cdots, k.
\]
By assumption, the BVP (1.1)-(1.2) has at least $2k-1$ positive solutions $u_i (i = 1, 2, \ldots, 2k-1)$ in \mathcal{P}_{a_k}. At the same time, it follows from Theorem 3.2, (3.6) and (3.7) that the BVP (1.1)-(1.2) has at least three positive solutions u, v and w in $\mathcal{P}_{a_{k+1}}$ such that

$$\|u\| < a_k, \quad b_k < \min_{t \in [t_2, \sigma(t_3)]} v(t), \quad \|w\| > a_k, \quad \min_{t \in [t_2, \sigma(t_3)]} w(t) < b_k.$$

Obviously, v and w are different from $u_i (i = 1, 2, \ldots, 2k-1)$. Therefore, the BVP (1.1)-(1.2) has at least $2k+1$ positive solutions in $\mathcal{P}_{a_{k+1}}$, which shows that this conclusion holds for $m = k + 1$. □

4 Example

Let us consider an example to illustrate the usage of the Theorem 3.2. Let $n = 2$ and $\mathcal{T} = \{0\} \cup \{1 + \frac{1}{2^{n+1}} : n \in \mathbb{N}\} \cup [\frac{1}{2}, \frac{3}{2}]$. Now, consider the following BVP,

$$y^{\Delta^6}(t) = f(t, y), \quad t \in [0, \sigma(1)] \cap \mathcal{T} \quad (4.1)$$

subject to the boundary conditions,

$$\begin{pmatrix}
\frac{1}{2}y^{(0)} - y^{(0)} + 2y^{(2)}(0) = 0, \\
2y^{(1)}(0) - 3y^{(1)}(0) + 2y^{(2)}(0) = 0, \\
y^{(0)}(1) + \frac{1}{2}y^{(1)}(1) + \frac{1}{3}y^{(2)}(1) = 0, \\
\frac{3}{4}y^{(3)}(0) - 2y^{(4)}(0) + 3y^{(5)}(0) = 0, \\
y^{(3)}(1) + \frac{1}{2}y^{(4)}(1) + y^{(5)}(1) = 0, \\
y^{(3)}(\sigma(1)) + \frac{1}{2}y^{(4)}(\sigma(1)) + y^{(5)}(\sigma(1)) = 0,
\end{pmatrix} \quad (4.2)$$

and

$$f(t, y) = \begin{cases}
\frac{sint}{100} + \frac{13}{50}y^{10}, & y \leq 2, \\
\frac{sint}{100} + \frac{6656}{25}, & y \geq 2.
\end{cases}$$
Then the conditions (A1)-(A4) are satisfied. The Green’s function $G_1(t, s)$ in Lemma 2.1 is

$$G_1(t, s) = \begin{cases} G_{11}(t, s), & 0 < \sigma(s) < t \leq \frac{1}{2} < \sigma(1) \\ G_{12}(t, s), & 0 \leq t < s < \frac{1}{2} < \sigma(1) \\ G_{13}(t, s), & 0 \leq t < \frac{1}{2} < s < \sigma(1) \end{cases}$$

$$G_2(t, s) = \begin{cases} G_{21}(t, s), & 0 < \sigma(s) < t \leq \frac{1}{2} < \sigma(1) \\ G_{22}(t, s), & 0 \leq t < s < \frac{1}{2} < \sigma(1) \\ G_{23}(t, s), & 0 \leq t < \frac{1}{2} < s < \sigma(1) \end{cases}$$

where

$$G_{11}(t, s) = \frac{12}{481} \left[\frac{91}{12} + \frac{23}{6} t - 5t^2 \right] \left[\frac{1}{2} \sigma(s)\sigma^2(s) + (\sigma(s) + \sigma^2(s)) + 4 \right],$$

$$G_{12}(t, s) = \frac{12}{481} \left[\frac{26}{3} - \frac{8}{3} t - \frac{7}{4} t^2 \right] \left[2\sigma(s)\sigma^2(s) + 2(\sigma(s) + \sigma^2(s)) + \frac{3}{2} \right] + \left[\frac{13}{2} + \frac{29}{4} t + t^2 \right] \left[\sigma(s)\sigma^2(s) - \frac{3}{2} (\sigma(s) + \sigma^2(s)) + \frac{8}{3} \right],$$

$$G_{13}(t, s) = \frac{12}{481} \left[\frac{13}{2} + \frac{29}{4} t + t^2 \right] \left[\sigma(s)\sigma^2(s) - \frac{3}{2} (\sigma(s) + \sigma^2(s)) + \frac{8}{3} \right],$$

$$G_{14}(t, s) = \frac{12}{481} \left[\frac{91}{12} + \frac{23}{6} t - 5t^2 \right] \left[\frac{1}{2} \sigma(s)\sigma^2(s) + (\sigma(s) + \sigma^2(s)) + 4 \right] + \left[-\frac{26}{3} + \frac{8}{3} t + \frac{7}{4} t^2 \right] \left[2\sigma(s)\sigma^2(s) + 2(\sigma(s) + \sigma^2(s)) + \frac{3}{2} \right],$$

$$G_{15}(t, s) = \frac{12}{481} \left[\frac{13}{2} + \frac{29}{4} t + t^2 \right] \left[\sigma(s)\sigma^2(s) - \frac{3}{2} (\sigma(s) + \sigma^2(s)) + \frac{8}{3} \right],$$

$$G_{16}(t, s) = \frac{12}{481} \left[\frac{91}{12} + \frac{23}{6} t - 5t^2 \right] \left[\frac{1}{2} \sigma(s)\sigma^2(s) + (\sigma(s) + \sigma^2(s)) + 4 \right].$$

The Green’s function $G_2(t, s)$ in Lemma 2.1 is

$$G_{21}(t, s) = \begin{cases} G_{21}(t, s), & 0 < \sigma(s) < t \leq \frac{1}{2} < \sigma(1) \\ G_{22}(t, s), & 0 \leq t < s < \frac{1}{2} < \sigma(1) \\ G_{23}(t, s), & 0 \leq t < \frac{1}{2} < s < \sigma(1) \end{cases}$$

$$G_{22}(t, s) = \begin{cases} G_{24}(t, s), & 0 < \sigma(s) < t \leq \frac{1}{2} < \sigma(1) \\ G_{25}(t, s), & 0 \leq t < s < \frac{1}{2} < \sigma(1) \\ G_{26}(t, s), & 0 \leq \sigma(s) < \frac{1}{2} < t < \sigma(1) \end{cases}$$

where

$$G_{21}(t, s) = \frac{16}{635} \left[\frac{39}{8} + \frac{11}{4} t - 3t^2 \right] \left[\frac{3}{4} \sigma(s)\sigma^2(s) + 2(\sigma(s) + \sigma^2(s)) + 6 \right],$$

$$G_{22}(t, s) = \frac{16}{635} \left[\frac{39}{8} + \frac{11}{4} t - 3t^2 \right] \left[\frac{3}{4} \sigma(s)\sigma^2(s) + 2(\sigma(s) + \sigma^2(s)) + 6 \right].$$
The existence of positive solutions by defining a suitable cone in Banach space.

Remark: If \(f \) involves the derivatives of \(y \) in the equation (1.1), we can establish the existence of positive solutions by defining a suitable cone in Banach space with suitable norm or by applying the method used by Xu and Yang [22].
5 Open Problem

In this paper, we established the existence of at least three positive solutions for $3n^{th}$ order three-point boundary value problem on time scales by using Leggett-Williams fixed point theorem. It will be interesting to obtain multiple positive solutions for the $3n^{th}$ order general boundary value problem on time scales,

$(-1)^n y^{(3n)}(t) = f(t, y(t), y^{(3)}(t), \ldots, y^{(3n-1)}(t))$

satisfying the general three-point boundary conditions,

$\sum_{k=1}^{3} [\alpha_{3i-3+j,k} y^{(3n-4+k)}(t_1) + \beta_{3i-3+j,k} y^{(3n-4+k)}(t_2) + \gamma_{3i-3+j,k} y^{(3n-4+k)}(\sigma(t_3))] = 0,$

for $j = 1, 2, 3$, and $1 \leq i \leq n$, where $n \geq 1$.

ACKNOWLEDGEMENTS: The authors thank the referees for their valuable suggestions and comments.

References

