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Abstract

In this paper, we recall some basic facts and preliminaries
related to fractional calculus by making a literature review for
its definitions and properties. This would provide sufficient
knowledge about this important topic. Several lemmas and
theorems are shown in detail for completeness.
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1 Introduction

Fractional calculus indicates the integration or the differentiation of non-integer
order. Interestingly enough, this topic has a long history in calculus. The first
discussion of fractional calculus was between Leibniz and L’Hopital. He actu-
ally asked the latter about the differentiation of order half of certain functions.
However, there are some mathematicians, like Riemann, Abel, Liouville, and
Lacroix, who laid the foundations for fractional calculus and dominated the
field. In his famous paper on the even time problem, Abel was the first one who
gave a physical description of the integral system of order 1/2 see [1, 2, 3, 4, 5].
Indeed, this article went further for solving an integral equation. A fractional
derivative was originally mentioned by Lacroix in a paper that was published
in 1819. He applied fractional calculus to resolve an integral equation arising
from the formulation of the tautochrone problem. Applications of the theory
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of partial calculus expanded greatly during the nineteenth and twentieth cen-
turies see [19, 20, 21, 22, 23], and many contributors provided definitions of
fractional derivatives and integrals see [9].

2 Basic facts

For completeness, we shall define the gamma function and beta function in
this section and show some of their aspects. By concentrating on the theory of
Mittag-Leffler functions, we can describe a variety of occurrences in a number
of processes that expand or decay too slowly to be described by conventional
functions like the exponential function and its backdrops.

2.1 Gamma function

Leonhard Euler, a Swiss mathematician, was the one who initially proposed
the Gamma function in order to extend the factorization to erroneous val-
ues. Later, other eminent mathematicians such as Christoph Gudermann, Carl
Friedrich Gauss, Adrien-Marie Legendre, Charles Hermit, Karl Werkstrasse,
Joseph Liouville, and many others researched it because of its significance.
One of the fundamental operations in fractional calculus is the gamma func-
tion. It belongs to the class of special transcendental functions. This function
can appear in various areas and fields like asymptotic series, definite integral,
hypergeometric series, Riemann-zeta function, number theory, and others see
6, 7, 8]. In what follows, we will introduce the definition of the Gamma
function, and demonstrate some of its properties for completeness, for more
applications and contributions for these definitions see [10, 11, 12, 13, 14].

Definition 2.1 The Gamma function T is a function T RT R* satisfying
the following equation:

I(n) = /0 Tttt (1)

The domain of the Gamma function can be expanded beyond the set R (for
example to complex numbers). The rather limited formulation given above,
on the other hand, is sufficient to answer the vast majority of several statistics
problems involving the Gamma function.

In what follows, we aim to introduce some basic properties associated with
the Gamma function. These properties would pave the way to understanding
several concepts connected with fractional calculus.

1. For a € R, we have:

I'a)=(a—1I'(a—1).
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Proof. By using Defintion 1, we have:

With the help of applying integration by parts, we get:

[Na)=(a— 1)/ v D=lemvdy,
0
which directly gives the desired result.

2. For n € N, we have: I'(n) = (n — 1)L
Proof. First of all, with the help using property 2, we can have:

'n)=n—1DI'n—1)=(n—-1)(n—-2)I'(n —2).
If we continue in this manner, we get:
L(n) = (n — 1)(n —2)...(3)(2)(1),
which yields the aimed result.

3. For a ¢ Z, we have:

™

Ma)(1—a) =

sin(am)’

Proof. By using Definition 1, we have:

MNa)I'(1 — «) :/ ettaldt/ e “u' " du,
0 0

I(a)T(1—a)= /OOO /OOO e~ (W G)a% dt du. (2)

Now, we use the substitutions 7 = t + v and w = % From the later

assumption we can have t = wu, Which makes the ﬁrst assumption to
be as u = . Now, by using
the change of Varlables to the Equation 2, we get

M(a)P(1 — a) // (1+Tw)|<]|d7'dw, (3)

where |J| is the Jacobian matrix in which it can be determined by:

or

1 =<

v Ov L =C
)= |5 ol = |Te TR o ¢
Y z '
o or| |Te wror| (1F2)7



42

Igbal M. Batiha et al.

From this point of view, the Equation 3 becomes:

M(a)(1 — a) = /OOO /Ooo T (1;“’) : jw)g dr dw,

0o o] a—1
Fa)l'(1—a) = / / v e T dr dw.
0 0 1 + w

Consequently, we have:

M(@)[(1 - a) = /Ooo ;":} (/Ooo e-TdT) dw,

which implies:

or

or

1 a—1 o) a—1
T()D(1 — a) :/ - dw+/ Y dw.
0 1

1+ w

Now, let w = % Then, we get:

M(a)(1 - a) :/01 w dw+/01 L ()

1+w 1+v

Note that the above two integrals have the same region, which makes us
to let ¥y = w = v in Equation 4 and obtains:

1 a1 —«

yo oty
FaFl—a:/—dy.
@r(—a)= [ £

By utilizing geometric series, we can have:

T(a)l(1—a)= /01 (v 4y ) [i(—l)ky’“] dy,

or

1 n 1
k+a k—a+1|’

D(@I(1—a)=> (1) {

s
sin (am)

which gives the expansion of the power series of
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4. T() = /7.
Proof. We have:

() =r()r(-3)

This leads by using third property to the following equality:

() -5

which yields the aimed result.

5. For n € N, we have:
1 L |
r —) = + =).
) =va]ll+3)

Proof. The result is obtained by iterating a recursion formula. In other
words, in view of first property, we can obtain:

o) et
e

If we continue in this manner, we reach the following assertion:

(- () -208)-()r()

This immediately gives the desired result.

ie.,

2.2 Beta function

Calculus depends heavily on the beta function because of its tight relationship
to the gamma function. Calculus allows for the reduction of numerous difficult
integrals into formulas that incorporate the Beta function. According to the
following formula, this function actually has a relationship to the Gamma
function:

Definition 2.2 The Beta function can be defined as follows:

B(p.q) = / (1 — 2)" e, (5)

where p,q > 0.



44 Igbal M. Batiha et al.

Due to its strong resemblance to the Gamma function, a generalization of
the factorial function, the Beta function is crucial in calculus. It can simplify
a large number of complex integral functions into simple integrals. However,
it can be explained as follows using the Gamma function:

I'(p)I'(q)
B(p,q) = m,

where the Gamma function is previously defined in Equation 2.
In the following content, we will demonstrate some basic properties con-
nected with the Beta function with their proofs.

(6)

1. For p,q € Rt we have: B(p,q) = B(q,p).

Proof. By using the Equation 6, we can have:

_I(pl(g) T(@'(p)
Blp.g) = Flp+q) Tlg+p) Bla.p)

2. For p,q € R, we have:

B o
(p,Q)—/O mx

Proof. In order to prove this result, one can use first property, i.e.,

B(p.q) = / 21— 2N, (7)

By using the substitution x = ﬁ, we can obtain:

= [ (1 ) )

This consequently implies:

B R
(p,Q)—/O W?J-

Now, by replacing y instead of x, we obtain the wanted result.

3. B(L,H) =

272
Proof. With the help of using Equation 6, we can have:
5 (1 1) _TErG)
29 ) T (L ly
2°2 I['(3+3)
which immediately gives:

B (1 1) = (Vr)’ =

22
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2.3 Mittag-Leffler function

In the solutions of fractional differential equations, the Mittag-Leffler function
plays an important role and appears frequently. The scientific community
has recently become interested in the Mittag-Leffler functions as a result of
the increased interest of researchers and scholars in both pure and applied
mathematics as well as non-traditional models. We may describe a variety
of occurrences in a range of processes that expand or decay too slowly to be
described by standard functions like the exponential function and its backdrops
by focusing on the theory of Mittag-Leffler functions.

Definition 2.3 Let a > 0. The Mittag-Leffler function E,(+) is defined by:

o k

E,(z) = g Tk T 1) (8)

It should be noted that the above series should be convergent. This function
was introduced by Mittag-Leffler. It can be immediately noticed from the
previous definition the following notation:

ZFkJrl Zk': : (9)

which represents the well-known exponential function. The following definition
can be used to define the Mittag-Leffler function in its more general version.

Definition 2.4 Let o, 5 > 0. The function E, s(-) defined by:

Easl®) =3 Wt 3y (10)

whenever the series converges is called the two-parameter Mittag-Leffler func-
tion with parameters o and [3.

In light of Equation 10, and by taking the parameters o and S at specific
values, one can generate several consecutive Mittag-Leffler functions. These
functions are listed below for completeness:

E[)J(ZL’):ZFO_'_l Zl‘ =

k=0
> .T
E = -
11(®) ;F k+1) =k
- " = zF 1 o zht? et —1
E — — [ —
1,2(2) ;r(/@m) g(k+1)' x;(mw z
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1 m—2 $k
1 (€x — F) . (11)
k=0

In the same regard, the two hyperbolic functions, the Sm};—(m) and cosh(z)
functions, are also deemed as some particular cases of the Mittag-Leffler func-
tion. In other words, we can have the following two results:

In general, we can have:

El,m(x) = T

oo o0 I‘
By (z ZFQk—i—l Z —Cosh (x),
k=0 k:O
d
" =z 1 o= a2+ sinh(x)
’ —T(2k+2) zc=(2k+1) x

Next, we intend to introduce some primary properties associated with
Mittag-Leffler function. These properties would play a major role in under-
standing the Mittag-Leffler function and how it can be employed in several
implementations.

1. For a, B € R*, we have:
1
Eyp(r) = = +xE, 048(7).
#0) = 5+ Fain(®)

Proof. By Defintion 2.4, we can have:

> 1 > xk
Zrak+5 T(3) *Zr(amm'

k=0 k=1
This is equivalent to say that:

+1

1 oo
Eoplt) = ——
ol@ 5+;r k+1 )+ 5)’

which consequently leads us to the desired result.
2. For a, 8 € RT, we have:

%Eaﬁ(x) _ Bapa(a) - (EZ — DEap()

Proof. By taking the term SEq g11(2) + az-: E, g11(x), we can obtain:

0 k

d d w
BEqsp+1(x) + aLU%Ea,B+1(x) = BEqp1(x) + OM% Z T(ak+pB+1)
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This yields:

d - ak = aka®
E. 4
FBasn(@tov g Basnl®) =8 ) i gy 2 Tk 1 A7 1)

or

i (ak + B)z*

d
E, =F, .
BEapy1(r )+ail7d o1 (T (ak + BT (ak + B) ()

=0

In other words, we have:

d
Ea,ﬁ(flf) = BEa,ﬁH(w) + Oél‘%ang_H(iL'),

ie.,

d  Baple) = BBapn(a)
%Ea,ﬁ-l-l(‘r) - oL )

which immediately gives the result.

3 Differentiation and integration operators

In this section, a literature review, main definitions, and theorems will be intro-
duced for the Riemann-Liouville fractional-order integrator, Riemann-Liouville
fractional-order differentiator, and Caputo fractional-order derivative differen-
tiator.

3.1 Riemann-Liouville fractional-order integrator

Fractional calculus and its popular applications have been increasingly paid
in very recent times. There are many known forms of fractional integral op-
erators, and some of them have been extensively studied with their applica-
tions, the Riemann-Liouville operator is one of them. Also, it relates to a real
function f:R—R with another function JZ'f for each value of the parameter
a > 0, where a is the starting point of the definite integral. From the fact that
asserts the integral is just a manner of generalization for several repeated an-
tiderivatives of the function f, the Riemann-Liouville fractional-order integral
operator J'f is also an iterated antiderivative of the function f of order a.
Actually, the Riemann-Liouville integral operator is named after two scientists
Bernard Riemann and Joseph Liouville, for more see [15, 16, 17]. Next, we
illustrate the definition of this operator coupled with some applications.

Definition 3.1 Let a be a real nonnegative number. Then J defined on
Lila,b] by:

JOf(x) = ﬁ /:E(x — ) f(t)dt, a <z < b, (12)
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1s called the Riemann-Liouville fractional-order integral operator of order «.

By referring to Equation 12, we can conclude the following property:

K
J§K = ——a° 13
% T T+ (13)
where K is constant. In addition, if one assumes o = 0 in Equation 12, then
J? = I will be yielded, which is called Identity operator. In the same regard,
if we take f(z) = (x — a)? in Equation 12, where a,p € R, then we obtain:

Jo(x —a) = ﬁ /:(:c — )7L (t — a)Pd.

By using the substitution t = a + y(z — a), we can get:

spte—ap = s [t ale = @) 0t e - @) - o - )y
This yields:
Jﬁx—wng%%%—fézfﬂ—yflﬁL

In other words, we have:
(ZL’ _ a)a—i—p

['«)

—a)** T(p+1)I(a)
I'() Pla+p+1)

Jo(x - a) = B(p+1,a),

or

(e —ap =

This consequent yields:

Fip+1)

Tz —a)f = —L )
e P

(2 — a)™*, (14)

which is called the Power Rule property.
In what follows, we present some properties of the Riemann-Liouville fractional-
order integral operator.

1. Let m,n > 0 and f € Ly[a,b]. Then we have: J"J"f= Jmt"f where
Li]a,b] the set of all functions such that their absolute values are inte-
grable on [a, b].

Proof. By using Equation 12, we can get:

TI@) = s [ @0 [e=nr ) a e,
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T () = m / £(7) /j(x L (= )t dr

Now, let t = 7 + s(z — 7), then we obtain:

1

RIS = s [ 50 [ @ = sto =)

(t+slx—1)—7)" - (x—7)-ds dr,

or

JPJNf(x) = —F(m)lF(n) /ax(x—T)m+”_1-f(T)/0 (1—s)™ "t 5"t ds dr.

In other words, we have:

1

0] / (& — 7)™ f(7) - B(n,m) - dr.

T @) = Fo

This immediately implies:

TN = s | ) () dr = TP,

Fm+n
which yields the aimed result.

2. For m,n > 0, we have: J""J" f= J'J"f.
Proof. By using the first property, we can obtain:

T =TT = T = A

3. For m,n > 0, we have: Jmt" f= jmtn=1jlf

Proof. In accordance with the second property, we can gain:

J(Zn—‘rnf — J;n—l—n—l—l—lf _ J:1+n_1J;f-

3.2 Riemann-Liouville fractional-order differentiator

For many applications, the RLF differential operator technique is crucial. In
actuality, RLF-order derivative operators are special instances of practically
all other formulations of the fractional-order derivative operators. It is known
that the fractional-order derivative of the constant is not zero, in contrast to



50 Igbal M. Batiha et al.

standard calculus. The essential definition of the fractional-order Riemann-
Liouville derivative operator is then given, followed by a few fundamental
features.

Definition 3.2 Let a € R and m = [«]. The operator D2 defined by:

Dif =D"J7 (15)

15 called the Riemann-Liouville fractional-order differential operator of order
a.

It should be remarked here that when o = 0 in Equation 15, we gain D? = I,
which is called Identity operator. Next, we aim to introduce the main definition
of the operator at hand.

Definition 3.3 Let a be a real nonnegative number. For a positive integer
m such that m—1 < a < m, the Riemann-Liouville fractional-order differential
operator of a function f of order a is defined by:

1 am
['(m — a) dz™

D2 f(x) = / “(w— e (e, (16)

Without loss of generality, one might consider a = 0 in Equation 16 to obtain:

1 am

D) = ['(m — a) dx™

/:(x — )" f(t)dt. (17)

In addition, when 0 < a < 1, then the Riemann-Liouville fractional-order
derivative of the function f of order « is defined by:

D*1(0) = sy |, (2= 07" Ho (18)

From Equation 18, one can conclude the Power Rule property which can be
outlined as follows: . .

e (19)
F'p—a+1)

where a,p € R. In this regard, it should be observed that the fractional-order
derivative of a constant function K is not zero. This means:

D%? =

x*CM
DK = ——K, 20
Il —«) (20)
where K is constant.

The following section provides various Riemann-Liouville fractional-order
derivative operator properties along with their justifications. These properties
can demonstrate the compositions of such operator with itself and with the
Riemann-Liouville integral operator.
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1. Let B > 0. Then for every f € L;[a,b], we have D?J? f = f almost every
where. Proof. Let m = [/], then by using Equation 15, we can get:

DIJLf = DRl = D f = DYLIPLf = .

2. Let ag,a0> 0 and ¢ € Ly|a, b] such that f = J*T*2¢. Then D D2 f =
Darte2 fwhere Ly[a, b] the set of all functions such that their absolute
values are integrable on [a, b].

Proof. Since f = J*"%2¢ then we have:
Dg1 Dng — ng Dgéz J;11+o¢2¢

But D = Dleal jlerl=er ang po2 = pleal jle217%2 - Therefore, we can
obtain:

DM D2 f = Do Do J31+a2¢ _ Dfaﬂjc[aﬂ—alD[aﬂ Ja[aﬂ—az ng—i-ang,

or

D D3 f = DIl jlenlen jerg,
consequently, we have:
D& D2 f = Dlenl jlealy = ¢,

This implies:
D' D2 f = ¢. (21)

Now, since f = JT%2¢ then

Da1+a2f _ Da1+a2Joc1+a2¢ _ D[Oq-i-ozﬂJfa1+a21—(a1+a2)Joz1+a2¢

ie.,

ng-i-azf — Dfa1+a2]Jfa1+a21¢ = ¢.

This implies:
Dgterf =¢. (22)

By Equation 21 and Equation 22, we get:
Da1Dazf — Da1+a2f_

This immediately gives the desired result.
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3.3 Caputo fractional-order derivative differentiator

The RLF-order derivative operator is recognized to have a number of issues.
First off, a constant’s fractional-order derivative operator is not zero. Second,
and more crucially, one must determine the following expression to find the
Laplace transform of such an operator:

: a—1

lim D f (),
which unfortunately has no physical meaning. Form this point of view, dif-
ferent definitions of the fractional-order derivative operators have been then
proposed, including the Caputo fractional-order derivative operator. This op-
erator is given in the next two definitions by using the same notations used by
podlubny in [24, 25, 26].

Definition 3.4 Let « € R and m = [«]. The Caputo fractional-order

deriwative operator DS is defined by:

DOf = Jre D" . (23)

Definition 3.5 Let o € RT and m = [« such that m —1 < o < m. Then
the Caputo fractional-order deivative operator of order a is given by:

Dif(x) = ! ) /I(x — )y M dt, x> a. (24)

I'm—«a

It should be noted that if a = 0 in Equation 24, one can get the most reliable
version of the Caputo fractional-order derivative operator. That is;

Do () = — | /0 @ — L (0. (25)

I'im—«

In fact, there are a variety of outcomes that can be obtained from using the
Caputo fractional-order operator. These outcomes are:

e The factorial-order derivative operator of a constant is always zero for
all orders a > 0.

e Asa —m, Df(x) = D" f(x) = f")(x).

e The Laplace transform can be taken over D? f(x). This is actually the
main explanation behind the use of the Caputo fractional-order deriva-
tive operator in several physical implementations.
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In view of the Equation 25, the Caputo operator formula that represents
the Power Rule property can be obtained in the following manner:

P+ pea
DgP = F(p,paﬂ)xp ,m—1l<a<m,p>m-—1,peR (26)
0 , m=—1<a<m,p<m-1 peN
As a result, we can also deduce the following constant formula as:
Dk =0, (27)

where K is constant.

Next, we present some basic properties related to the Caputo fractional-
order derivative operator. These properties are related to the linearity and the
non-commutation of the operator under consideration.

1. Let m — 1 < a < m such that m € N. Then we have:

DG (@) + pg(2))=ADg f(x) + nDgg(x),
where A, u are two scalers.

Proof. With the help of using the Equation 24, we can get:

DE(Mf(x) + pg(x)) = : ] / w(x = )" AT () + g™ (1)) .

F'im—a

This implies:

DE(M(@) + pgle)) = ) / C(w =ty (1)t

I'(m—a

I ¢ o — fym—a=1,(m)
e [ o

which means:
Dg(Mf(x) + pg(x)) = ADg f(t) + nDgg(t).

2. Let m — 1 < a <m such that m, 5 € N and o € R. Then we have:
D3Dg f(x) = Dyt f(z) #D;Dg f ().

4 Fractional differential equations (FDE)

In the last years, FDEs and their applications have received wide attention
from many researchers. It is known that the ordinary differential equation is
a special case of the FDEs. In particular, fractional derivative formulations
have gained great importance and interest in many fields because of their
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applications in science and engineering. They are broadly used in mathemat-
ics, chemistry, physics, mechanics, medicine, biology, control theory, signal
and image processing, environmental and financial sciences, and other various
disciplines. In this connection, we present next an official definition of the
fractional differential equation in view of the RL and Caputo fractional-order
derivative operators, respectively.

Definition 4.1 Let « > 0, « ¢ N, n € N such that n — 1 < a < n and
g:ACR=R, then:

D%y(x) = g(z,y(x)), (28)
is called a FDE of the RL type with initial conditions:
D Fy(0) = hy, (k=1,2,3,....,n—1). (29)
Similarly,
DZy(z) = g(z,y(x)), (30)

18 called a fractional differential equation of the Caputo type with initial con-
ditions:
DFy(0) = hy, (k=1,2,3,....,n—1). (31)

5 Conclusion

By doing a study of the literature on the definitions and properties of fractional
calculus, we are able to recollect some fundamental details and prerequisites
in this work. This would give you enough information on this crucial subject.
For completeness, several lemmas and theorems are illustrated in detail.

6 Open Problem

From the perspective of the presented theories, one might further investigate
and explore certain conditions further results, facts, and theorems related to
the field of fractional calculus.
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